
SQE/YOUR NAME/SPONSOR Web Seminar Slide 1

Software Reuse
November 6, 2007
Chuck Allison
Utah Valley University

SQE/YOUR NAME/SPONSOR Web Seminar Slide 2

About This Webinar

• All About Reuse of Software Assets:
• Code
• Design
• Architecture
• Requirements (MKS)

SQE/YOUR NAME/SPONSOR Web Seminar Slide 3

CODE REUSE
Someone has already solved your code issues…

The Best Code is that which you don’t have to write.

SQE/YOUR NAME/SPONSOR Web Seminar Slide 4

Software Libraries

• C, C++, Java, .NET, Python, etc.
• You use these every day
• What makes them so useful (reusable)?

SQE/YOUR NAME/SPONSOR Web Seminar Slide 5

Attributes of Reusable Code

• Solves a common problem
• Well-defined Interface

– High cohesion
– Right level of “granularity”

• function, class, component, framework

• Generic in nature
• Configurable

– To apply in your context

SQE/YOUR NAME/SPONSOR Web Seminar Slide 6

C Example (1980s)

• The qsort function
• Performs the Quicksort algorithm on any

type of array
• qsort(a, n, sizeof(int), cmp);

SQE/YOUR NAME/SPONSOR Web Seminar Slide 7

C++ Examples (1990s)

• sort(a, a+n);
• sort(a, a+n, greater<T>());
• sort(v.begin(), v.end());
• find_if(a, a+n, pred);
• transform(a, a+n, b,

bind2nd(plus<int>(), 1));
• accumulate(istream_iterator<int>(f),

istream_iterator<int>(), 1,
multiplies<int>());

SQE/YOUR NAME/SPONSOR Web Seminar Slide 8

Commonly Used Java Classes

• Collection classes
• Thread-related classes
• GUI Classes (Swing)
• Network-related classes
• Too many to mention in Core API

– 3,000+ in 200+ packages

SQE/YOUR NAME/SPONSOR Web Seminar Slide 9

Frameworks

• Object-Oriented Reuse
– Related classes that serve some application area

• Frameworks provide much of the needed
functionality for a particular domain
– And they typically have a large footprint
– You provide the missing detail

• Examples:
– GUIs
– Persistence
– Security

SQE/YOUR NAME/SPONSOR Web Seminar Slide 10

wxPython Example
Application Object
class MyApp(wx.App):

def OnInit(self):
MyFrame("Chuck Allison - Project#1").Show()
return True

Top-level Window
class MyFrame(wx.Frame):

def __init__(self, title):
wx.Frame.__init__(self,None,-1,title)
Create/bind needed GUI objects…

Event Handlers
def OnExit(self, event):

self.Close()

Launch Application
if __name__ == "__main__":

MyApp(False).MainLoop()

SQE/YOUR NAME/SPONSOR Web Seminar Slide 11

Reusable Software Components

• Usually refer to self-contained software assets
available remotely in binary form
– Different processes, different platforms

• Examples: COM, J2EE
• Features:

– Complete separation of interface and implementation
• implementation exists elsewhere!

– A broker or registry finds components
– Proxy objects (stubs, skeletons, etc.) bridge platform

barriers (data marshalling)

SQE/YOUR NAME/SPONSOR Web Seminar Slide 12

Python COM Example

from win32com.client import Dispatch

Open and save a backup copy of c:\PDA2CFG.doc
wapp = Dispatch("Word.Application")
wapp.Documents.Open("/PDA2CFG.doc")
wapp.ActiveDocument.SaveAs("/PDA2CFG-Bak.DOC")
wapp.ActiveDocument.Close()

SQE/YOUR NAME/SPONSOR Web Seminar Slide 13

Configurability

• Using software components as “black
boxes” doesn’t always solve user needs
– They need to be able to tweak things
– But this requires a deeper understanding of

how the software works
• So, effective reuse can come with

noticeable learning curve
– You must decide if it’s worth it

SQE/YOUR NAME/SPONSOR Web Seminar Slide 14

Alexandrescu’s Singleton

• Has 4 template parameters:
– The class to “singleton-ize”
– Storage Policy
– Lifetime Policy
– Threading Model

• Singleton<MyClass,CreateStatic,NoDestroy> x;
– This instance defaults to SingleThreaded

SQE/YOUR NAME/SPONSOR Web Seminar Slide 15

Reusable Source Code

• Most of our examples so far have reused
runnable code
– Pre-compiled libraries
– Distributed binary objects

• You can also reuse source code
– But beware…

SQE/YOUR NAME/SPONSOR Web Seminar Slide 16

Source Code Search Engines

• Googling for “source code search engine”
– code.google.com, koders.com, krugle.com,…

• Remember it is code:
– Bugs included!

• tends to be less reliable than released binaries
– You need to understand it
– Who is going to maintain it?

• A good learning tool

SQE/YOUR NAME/SPONSOR Web Seminar Slide 17

Designing for Reuse

• Commonality/Variability Analysis (CVA)
– A key to design flexibility

• “Separate things that vary from things that stay
the same” in a given context
– Interfaces “stay the same”
– Implementation details “vary”

• Promotes high cohesion, low coupling,
genericity

• Such well-designed software assets tend to be
reusable

SQE/YOUR NAME/SPONSOR Web Seminar Slide 18

DESIGN REUSE
Someone has already solved your design issues…

SQE/YOUR NAME/SPONSOR Web Seminar Slide 19

How Do You Reuse a Design?

• Many problems have similar abstractions
– Design experience is too valuable a thing to

waste
• What drives a design?

– Forces that follow requirements
– Forces resulting from architecture decisions

• How can design decisions be shared so
they can be employed under similar
conditions in the future?

SQE/YOUR NAME/SPONSOR Web Seminar Slide 20

Design Patterns

• Solutions to common recurring software
design problems

• Based on principles gleaned from decades
of experience, such as…
– Don’t repeat yourself
– Minimize coupling between things that interact
– Abstractions should not depend on (or “see”)

details; rather, details should conform to
abstractions

SQE/YOUR NAME/SPONSOR Web Seminar Slide 21

Sample Design Dilemma

• Clients generally obtain information from
objects of interest (the “subject”) by calling
the subject’s methods

• But how can the client keep current if the
subject keeps changing?
– How do clients know when to query the

subject?

SQE/YOUR NAME/SPONSOR Web Seminar Slide 22

The Observer Pattern

• Allows an object to be tracked (observed)
by an arbitrary number of observers with
minimal coupling

• AKA “Publisher-Subscriber”
• Think of RSS feeds:

– You subscribe to get notifications
– You can unsubscribe at any time

SQE/YOUR NAME/SPONSOR Web Seminar Slide 23

The Observer Pattern (GoF)

+addObserver(in Observer)
+removeObserver(in Observer)
+notify()

Subject

+getState()
-subjectState
ConcreteSubject

-observers

1 *

+update()
-observerState
ConcreteObserver

-subject

11

+update()

«interface»
Observer

SQE/YOUR NAME/SPONSOR Web Seminar Slide 24

You Don’t Really “Reuse” Design

• Not literally, anyway
• You learn from the experience of others

– Those who created the pattern
• You use that knowledge (of principles,

especially) to complete your own designs
– Your design may vary a little

SQE/YOUR NAME/SPONSOR Web Seminar Slide 25

Patterns In-the-Large

• Patterns aren’t confined to design issues
• Many types of patterns exist

– Because many types of problems exist!
• Patterns describe high-level, generic

solutions that can be applied in many
contexts
– They can adapt to many contexts
– They can lead to various implementations

SQE/YOUR NAME/SPONSOR Web Seminar Slide 26

Architecture Patterns

• Resolve very high-level, “in-the-large”
issues of software projects

• Describes fundamental structure of a
system:
– How does the data flow?
– How do components communicate?
– Where are components deployed?

SQE/YOUR NAME/SPONSOR Web Seminar Slide 27

Common Architecture Patterns

• Layers (aka “n-tier”)
• Pipeline (aka “Pipes and Filters”)
• Blackboard
• Peer-to-peer
• Broker

SQE/YOUR NAME/SPONSOR Web Seminar Slide 28

Layered Architecture Example

«subsystem»
Presentation

«subsystem»
Business Objects

«subsystem»
Database

SQE/YOUR NAME/SPONSOR Web Seminar Slide 29

Pipeline Architecture

• Like UNIX “pipes and filters”
• When processes/components work in sequence
• The output of one step becomes input into the

next

SQE/YOUR NAME/SPONSOR Web Seminar Slide 30

Blackboard Architecture

• For very complex problems that defy simple organization
• The “blackboard” is a shared repository of information
• Components update the repository throughout execution
• Some monitoring facility is needed to coordinate the

shaed use of the blackboard

SQE/YOUR NAME/SPONSOR Web Seminar Slide 31

Peer-to-Peer

• A de-centralized network of cooperating
components

• “Message passing” protocol
• Example: e-mail

SQE/YOUR NAME/SPONSOR Web Seminar Slide 32

Broker

• A way of managing distributed applications
• The Broker is a mediator for components

that want to interact on demand
• Examples: DCOM, J2EE, SOA

SQE/YOUR NAME/SPONSOR Web Seminar Slide 33

Conclusion

• Many of your issues have been resolved
before at some level or another:
– Implementation, design, system architecture

• Reuse requires:
– Being informed
– Climbing a learning curve
– Sharing your solutions

