
Design Principles Behind Design
Patterns
Chuck Allison

Objective

� Investigate some timeless design principles
� Observe how they are manifest in

selected design patterns
◦ as well as in other ways

� Look briefly at some software patterns
that aren’t specifically related to design
◦ Architectural
◦ Organizational

Better Software 2008 2Chuck Allison

Agenda

� The History and Impact of Design
Patterns in Software Development

� The Anatomy of a Design Pattern
� Design Principles
◦ and how they drive pattern creation

� Other Types of Patterns

Better Software 2008 3Chuck Allison

Context

� The Design Patterns “movement” has
revolutionized software development

� Most everyone is familiar with the “Gang
of Four” book
◦ Design Patterns: Elements of Reusable Object-

oriented Software, Gamma et al

� Terms like Strategy and Adapter have crept
into our technical vocabularies

4Better Software 2008Chuck Allison

The Impact of Design Patterns

� They constitute a catalog of reusable
software artifacts
◦ They apply in many situations
◦ They share design expertise

� They give us a useful, shared vocabulary
◦ “It looks like we need a Composite here”

� Most importantly, they improve our
thinking about design
◦ Because they adhere to sound principles

Chuck Allison Better Software 2008 5

23 is not a Magic Number

� The 23 GoF design patterns are protypical,
but not sacrosanct

� There are many more design patterns
◦ New ones still emerge

� There are other, non-design software-
related patterns
◦ Architectural, organizational, testing,

refactoring, process

Better Software 2008 6Chuck Allison

Strange But True…

Better Software 2008 7

The enormous success of design patterns is a
testimonial to the commonality seen by object
programmers. The success of the book Design
Patterns, however, has stifled any diversity in
expressing these patterns.

-- Kent Beck

Chuck Allison

A Quick Pattern History
� Developers have long sought a way of

preserving and communicating design
decisions

� The Hillside Group
◦ Smart People found inspiration in Christopher

Alexander’s patterns of building architecture
◦ The Timeless Way of Building, 1979

� Early publications
◦ Coplien’s Advanced C++, GoF, Coplien’s

Software Patterns

Better Software 2008 8Chuck Allison

Anatomy of a Design Pattern
� Summary
◦ State what is trying to be accomplished in

succinct, high-level terms
� Problem
◦ Describes the context for the problem, the

forces that cause the “dilemma”, and the negative
consequences of not resolving those forces

� Solution
◦ Describes the structure and behavior of the

solution. Shows how forces are resolved. Include
sketches as needed.

Chuck Allison Better Software 2008 9

What a Design Pattern Is

� A solution to a design problem in a given
context

� It balances the forces in a given context to
achieve a design goal

� Design patterns are independent of
programming language and platform
◦ They can be manifest in many ways

Better Software 2008 10Chuck Allison

What a Design Pattern is Not

� Just a diagram
◦ sketches help, but different patterns have

identical sketches
◦ sketches illustrate forces and their resolution

in a general manner

� Code
� A step-by-step recipe
◦ they’re more of a heuristic

� A Panacea

Better Software 2008 11Chuck Allison

Patterns and Principles

� Patterns emerge from principles
◦ “Program to an Interface, not an

Implementation”
◦ “Minimize coupling; maximize cohesion”
◦ “Don’t Repeat Yourself”

� The principles have long been with us
◦ Long before design patterns were around
◦ It takes effort to master them
◦ Studying and using patterns helps

Better Software 2008 12Chuck Allison

DESIGN PRINCIPLES

Chuck Allison Better Software 2008 13

A Fundamental Principle

� Separate things that vary from things that
stay the same

� The benefit is obvious:
◦ The static part is not affected by changes in

other related components

� Not always adhered to by developers!
� Manifests itself in different ways…

Better Software 2008 14Chuck Allison

Commonality vs. Variability
Take 1 – Designing a Function

Better Software 2008 15

What Stays the
Same

Coupling
Mechanism

What Changes

Procedure Logic Function
Parameters

Input data

The Abstraction: A function encapsulates a group of
related operations at the statement level.

int f(int n, string data) {…}

Chuck Allison

Commonality vs. Variability
Take 2 – Designing a Class Hierarchy

Better Software 2008 16

What Stays the
Same

Coupling
Mechanism

What Changes

The Interface Inheritance, subtype
polymorphism

Implementations of
individual methods

The Abstraction: A top-level class defines an
interface. Subclasses implement the interface.

A related design pattern: Template Method

Chuck Allison

Template Method
� Used in some multi-step algorithms
� The top-level, public method calls upon

other methods for each step
� Some steps don’t vary, some do
� The parts that vary are separated out into

polymorphic methods
◦ overridden by subclasses

� The top-level method is non-polymorphic
◦ it controls the entire process

Chuck Allison Better Software 2008 17

Template Method Description
� Summary
◦ Define the skeleton of an algorithm, deferring some steps

to subclasses. Subclasses can customize an algorithm
without changing the overall algorithm structure.

� Problem
◦ You want to control the steps of the algorithm, but some

of the steps vary. You want to factor common behavior
among subclasses into the base class to avoid duplication.
You want to allow subclasses to customize behavior in a
controlled way.

� Solution
◦ Provide a fixed interface for clients, but have the

implementation call upon hidden, polymorphic methods as
needed.

Chuck Allison Better Software 2008 18

Template Method Class Sketch

Better Software 2008 19Chuck Allison

Java Code

Chuck Allison Better Software 2008 20

abstract class Base implements IBase {
public final void theAlgorithm() {

fixedop1();
missingop1();
fixedop2();
missingop2();

}
final void fixedop1() {

System.out.println("fixedop1");
}
final void fixedop2() {

System.out.println("fixedop2");
}
protected abstract void missingop1();
protected abstract void missingop2();

};

Java Code (continued)

Chuck Allison Better Software 2008 21

class Derived extends Base {
protected void missingop1() {

System.out.println("missingop1");
}
protected void missingop2() {

System.out.println("missingop2");
}

};

class Skeleton {
public static void main(String[] args) {

Derived d = new Derived();
d.theAlgorithm();

}
}

Commonality vs. Variability
Take 3 – Designing Families of Implementations

Better Software 2008 22

What Stays the
Same

Coupling
Mechanism

What Changes

High-level Solution
Structure

Separate Class
Hierarchies

Implementation of
solution facets

The Abstraction: A client class depends on other
classes for part of its behavior. A specific
implementation can be selected on demand.

Related design patterns: Strategy, Bridge, (most…)

Chuck Allison

Strategy Description
� Summary
◦ Define an interchangeable family of algorithms. Let

implementations vary independently from clients.
� Problem
◦ A client may need variants of an algorithm,

configurable at runtime. Without encapsulating the
related variants, significant amounts of code must
change when an selected implementation changes.

� Solution
◦ Define an interface for the family of algorithms.

Encapsulate each variant in a subclass. Clients keep
polymorphic references to implementations.

Chuck Allison Better Software 2008 23

Strategy Class Sketch

Better Software 2008 24Chuck Allison

Compile-time Applications of
Strategy
� Isolating platform-specific code

� C++ Template Idioms
◦ Traits

◦ Policies

� C++ Container Adaptors

� All use implicit interfaces

Better Software 2008 25Chuck Allison

Isolating Platform-Specific Code

Better Software 2008 26

Accomplished with conditional compilation, etc.

Chuck Allison

C++ Template Traits

� A way of factoring variable data from a
template

Better Software 2008 27Chuck Allison

IEEE Traits

template<typename T>
struct IEEE_traits {};

template<>
struct IEEE_traits<float>
{
typedef float FType;
enum {

nbytes = sizeof(float),
nbits = nbytes*8,
exp_bits = 8,
bias = 127

};
};

template<>
struct IEEE_traits<double>
{
typedef double FType;
enum {

nbytes = sizeof(double),
nbits = nbytes*8,
exp_bits = 11,
bias = 1023

};
};

Using IEEE_Traits

Better Software 2008 29

template<typename FType>
bool is_infinity(FType x) {

return exponent(x) == IEEE_traits<FType>::bias+1 &&
fraction(x) == FType(0);

}

template<typename FType>
bool is_nan(FType x) {

return exponent(x) == IEEE_traits<FType>::bias+1 &&
fraction(x) != 0;

}

Chuck Allison

Policies

� Classes with implementation strategies
are template arguments

� Example – C++ Container Adaptors:
queue<int> q1; // Default policy
queue<int, list<int> > q2; // Explicit policy

Better Software 2008 30Chuck Allison

Commonality vs. Variability
Take 4 – Designing User Interfaces

Better Software 2008 31

What Stays the
Same

Coupling
Mechanism

What Changes

The data (structure
of model)

Complex! (MVC) The current user
view

The Abstraction: Data can be presented to users
in different ways. Views vary independently of data.

Related design patterns: Model-View-Controller
(Observer + Composite + Strategy)

Chuck Allison

Model-View-Controller

Better Software 2008 32Chuck Allison

Another Fundamental Principle

� Program to an Interface, not an Implementation
◦ Same benefit as before (shield clients from

changes)

� Actually, just a special case of the previous
principle
◦ interfaces stay the same, implementations vary
◦ You can’t program exclusively to an interface

unless it exists separately from the implementation

� Moral: Many design principles “overlap”

Better Software 2008 33Chuck Allison

OOP 101

� Design a Stack Class

Better Software 2008 34Chuck Allison

MyStack in Java

Better Software 2008 35

class MyStack<T> {
private ArrayList<T> data = new ArrayList<T>();
public void push(T t) {

data.add(t);
}
public T pop() {

return data.remove(data.size()-1);
}
public T top() {

return data.get(data.size()-1);
}
public int size() {

return data.size();
}

}

Chuck Allison

Using MyStack

Better Software 2008 36

public static void main(String[] args {
MyStack<Integer> stk = new MyStack<Integer>();
stk.push(1);
stk.push(2);
System.out.println(stk.size()); // 2
System.out.println(stk.pop()); // 2
System.out.println(stk.pop()); // 1
System.out.println(stk.size()); // 0

}

Chuck Allison

How is Our Design?

� Is the user really shielded from changes in
implementation?

� No…
◦ The fact that we use an ArrayList introduces

a dependency for the user
◦ If we change it later, the user is affected
◦ Or a better class with a different name may

come along
◦ Users should program to an interface

Better Software 2008 37Chuck Allison

Separate The Implementation

Better Software 2008 38Chuck Allison

Using IStack

Better Software 2008 39

static void test(IStack stk) { // Transparency
stk.push(1);
stk.push(2);
System.out.println(stk.size());
System.out.println(stk.pop());
System.out.println(stk.pop());
System.out.println(stk.size());

}
public static void main(String[] args) {

IStack<Integer> stk = new MyStack<Integer>();
test(stk);

}

Chuck Allison

Using a Different Implementation

� Programming to an interface facilitates
adapting to a different implementation

� The Adapter Pattern:

Better Software 2008 40Chuck Allison

A Variation on Adaptor

� The essence of Adapter allows clients to
use a familiar interface with an
implementation with a different interface

� The interfaces can be implicit
� Example: C++ function-object adapters

Chuck Allison Better Software 2008 41

C++ Function Object Adapters

� bind1st, bind2nd:
◦ convert a binary function into a unary

function by saving one of the arguments

� not1, not2:
◦ logically negate the return value of a function

� Among others

Chuck Allison Better Software 2008 42

Using bind2nd and not1

Chuck Allison Better Software 2008 43

int main() {
// Add 5 to some integers
int a[] = {10, 25, 40};
transform(a, a+3, a, bind2nd(minus<int>(), 5));
copy(a, a+3, ostream_iterator<int>(cout, " "));
cout << endl; // Printed: 5 20 35

// See if the result is even or not
bool b[3];
transform(a,a+3,b,not1(bind2nd(modulus<int>(),2)));
cout << boolalpha; // Print "true" instead of "1"
copy(b, b+3, ostream_iterator<bool>(cout, " "));
cout << endl; // false true false

}

A Related Principle

� Separate object creation from object use
� Client contexts can then use such objects

polymorphically
◦ by programming to an interface only

� Isolating object creation into a single
module is Good Design

Better Software 2008 44Chuck Allison

Violating the Principles

Better Software 2008 45Chuck Allison

A Better Approach

Better Software 2008 46Chuck Allison

Factory Method Description

� Summary:
◦ Lets a class defer object instantiation to

concrete classes polymorphically.
� Problem:
◦ A module uses an abstraction, so you want to

follow the DIP and not depend on concrete
details. Client modules shouldn’t need to know
which concrete class to instantiate.

� Solution:
◦ Define an interface for creating a family of

objects, but let concrete subclasses decide which
class to instantiate.

Factory Method Sketch

Better Software 2008 48Chuck Allison

// Client has been given a Creator object
Product aProduct = aCreator.factoryMethod();

Opposing Forces
� Objects are most easily created with a

new expression, using the concrete class
� But this introduces a dependency on a

concrete class, losing the flexibility of
“programming to an interface, not an
implementation”
◦ and also losing the flexibility of separating

object use from object creation
◦ the using module may not have all the details

needed for creation

Better Software 2008 49Chuck Allison

Balancing the Forces

� Factory Method balances these forces by
encapsulating object creation

� Users call a method that “does the right
thing”

� But one size does not fit all…

Better Software 2008 50Chuck Allison

Variations On Factory Method

� Plain Factory Method
◦ just a function
◦ no need for inheritance

� Class Factory Method
� Clone Method
◦ an “Object Factory Method”

Better Software 2008 51Chuck Allison

Plain Factory Method

Better Software 2008 52

// Separate creator class
final class Creator {

public static Product create() {
return new Product();

}
}

// Non-polymorphic:
class Product {

// Non-public constructor
Product(){/* whatever */}

}

Chuck Allison

Class Factory Method

� The class is the creator
� The factory method is static
� Example:
◦ valueOf methods:

Integer n = Integer.valueOf(s);

Better Software 2008 53Chuck Allison

Clone Method

� An object is the creator
� The factory method is therefore non-static
� Example:
◦ standard clone() overrides:

Foo f2 = f.clone();

Better Software 2008 54Chuck Allison

Another Perspective

� Dependency Inversion Principle
� High-level components should not depend

(“know about”) lower-level components
◦ that’s why client modules should not explicitly

create concrete objects

� All components should depend on
abstractions as much as possible

Better Software 2008 55Chuck Allison

Violating the Principle

Better Software 2008 56

Classic
3-tier
Architecture

Chuck Allison

A Better Design

Better Software 2008 57Chuck Allison

Dependency Rules of Thumb
“Little Principles”
� No variable in an abstraction should hold an

explicit pointer to a concrete class
◦ Use top-level pointers polymorphically

� No class should derive from a concrete class
◦ Only derive from abstract classes

� No method should override an implemented
method of any of its base classes
◦ Only override abstract methods

� These rules can’t be followed all the time!
◦ The key is: How volatile is the lower-level module?

Better Software 2008 58Chuck Allison

Chuck Allison Better Software 2008 59

Java 2.0 Collections

Resource Management

� Factory Method is about initialization
◦ resources other than memory can be

allocated

� How do you ensure resource deallocation?

Better Software 2008 60Chuck Allison

Disposal Method

� Encapsulates the details of object disposal
by providing an explicit method for
cleanup

� Disposal Method complements Factory
Method by resolving issues Factory
Method leaves dangling

� Two Variations:
◦ Factory Disposal Method
◦ Self-Disposal Method

Better Software 2008 61Chuck Allison

Factory Disposal Method

Better Software 2008 62

final class Creator {
public static Product create() {

return new Product();
}
public static void dispose(Product p) {

/* whatever */
}

}
…

Creator::dispose(p);

Chuck Allison

Self-Disposal Method

Better Software 2008 63

final class Creator {
public static Product create() {

return new Product();
}
public void dispose() {

/* whatever */
}

}
…

p.dispose();

Chuck Allison

C++ Variation

� Deterministic destruction can automate
resource deallocation:
◦ constructors allocate a resource
◦ destructors deallocate the resource

� Destructors execute automatically
� RAII Idiom
◦ “Resource Acquisition Is Initialization”

� Similar functionality in C# via using

Better Software 2008 64Chuck Allison

RAII in C++

{
ifstream f("myfile");
string line;
while (getline(f,line))

cout << line << endl;
} // stream closes automatically

Better Software 2008 65Chuck Allison

Using C++0x’s shared_ptr

Better Software 2008 66

class Foo {
public:

Foo(){}
~Foo() {

cout << "destroying a Foo\n";
}

};

int main() {
vector<shared_ptr<Foo> > v;
v.push_back(shared_ptr<Foo>(new Foo));
v.push_back(shared_ptr<Foo>(new Foo));
v.push_back(shared_ptr<Foo>(new Foo));

}

Chuck Allison

Using a Custom Deleter

Better Software 2008 67

int main() {
FILE* f2 = fopen("deleter.cpp", "r");
shared_ptr<FILE> theFile(f2, &fclose);
/* … */

}

Chuck Allison

Multi-Step Resource Management

� Composite resources usually need to be
handled as transactions
◦ if an exception occurs at any time during

allocation, previously competed allocation
need to be backed out

� Gnarly with try-blocks
◦ see next slide

Chuck Allison Better Software 2008 68

Chuck Allison Better Software 2008 69

void g() { // 3-part transaction
risky_op1();
try {

risky_op2();
}
catch (Exception x) {

undo_risky_op1();
throw x; // Rethrow exception

}

try {
risky_op3();
writeln("f succeeded");

}
catch (Exception x) {

undo_risky_op2();
undo_risky_op1();
throw x;

}
}

Scope Guards in D

Better Software 2008 70

void g() {
risky_op1();
scope(failure) undo_risky_op1();
risky_op2();
scope(failure) undo_risky_op2();
risky_op3();
writeln("g succeeded");

}

Chuck Allison

Extending a Class

� Typically done via inheritance
◦ an example of code reuse

� Comes with a price:
◦ dependency on a concrete class
◦ inheritance is a compile-time mechanism
� adding functionality statically can lead to class

explosion

◦ you may want runtime extension

Better Software 2008 71Chuck Allison

OO Design 101 Redux

� Consider a GUI type named Window
◦ Unadorned, but functional

� Now suppose we want some more full-
featured windows
◦ Bordered, scrollable, etc.

� How do we design this?

72Better Software 2008Chuck Allison

OO Design 101 Redux

� A BorderedWindow is most assuredly
a Window
◦ Certainly sounds like an “is-a”

� Ditto ScrollableWindow
◦ Sort of obvious, right?
◦ Let’s see…

73Better Software 2008Chuck Allison

A “Simple” Window Hierarchy

Chuck Allison Better Software 2008 74

Counting Classes
� Note that the number of classes is quite

predictable:
◦ 1 (= C(2,0)) for the root
◦ 2 (= C(2,1)) for the single-featured subclasses
� 2 features total, choosing 1 at a time
◦ 1 (=C(2,2)) for the leaf
� Combines all features

� Total of 4

75Better Software 2008Chuck Allison

Evaluating Our Design

� Ignore details of multiple inheritance…
◦ We can always work around that

� Any other problems?

76Better Software 2008Chuck Allison

Problem #1
� The subclasses have operations that the

Window superclass doesn’t
◦ scroll, for example
◦ Not completely an “is-a”
◦ But it isn’t terribly unusual for a subclass to add

operations; no biggie
� We could put these methods in Window
◦ But they’d be no-ops in the subclasses that don’t use

them
◦ Someone isn’t encapsulating variation!

77Better Software 2008Chuck Allison

Problem #2

� What if we need to add another
important, independent windowing
feature?
◦WhizbangWindow

� What impact does this have on the
hierarchy?

78Better Software 2008Chuck Allison

Hierarchical “Progress”

Chuck Allison Better Software 2008 79

Definitely Counting Classes
� 1 (= C(3,0)) for the root
� 3 (= C(3,1)) for the first row
◦ Single-featured

� 3 (= C(3,2)) for the second “row”
◦ Double-featured

� 1 (= C(3,3)) for the leaf
◦ All three

� Total of 8

80Better Software 2008Chuck Allison

Looking Ahead

� C(n,0) + C(n,n-1) + … + C(n,1) + C(n,0)
� Equals 2n

� Can anyone say “combinatorial
explosion”?

81Better Software 2008Chuck Allison

The Open-Closed Principle

� Classes should be open for extension, but
closed to modification

� In other words, you should be able to add
to or modify a class’s functionality without
changing its code
◦ Otherwise users depend on volatile code

� How?

Better Software 2008 82Chuck Allison

The Decorator Pattern

� Uses composition in place of inheritance
� A decorator wraps an object

polymorphically
� It adds or modifies functionality
◦ calling back to the original object as needed

� Decorators can be created and combined
at runtime

Better Software 2008 83Chuck Allison

Decorator Class Sketch

84Better Software 2008Chuck Allison

Decorator Object Sketch

Decorator objects ultimately call back to an
original concrete component. They can be
used to implement before-after-around
methods. They can be composed at runtime.

85Better Software 2008Chuck Allison

Decorator in java.io

Better Software 2008 86Chuck Allison

A Companion Principle

� Prefer Composition to Inheritance
� More flexible
� Often simpler
� Inheritance is for static, “is-a” relationships

Better Software 2008 87Chuck Allison

C++ Example

� From class homework

Better Software 2008 88Chuck Allison

Coupling

� Another way to express these ideas is the
old adage:
Minimize coupling between related entities

� Or to paraphrase Einstein:
Objects that interact should have as little
coupling as possible, but no less

� Finding that coupling “sweet spot” takes a
little finesse
◦ and some abstractions :-)

Better Software 2008 89Chuck Allison

(Observer)

Better Software 2008 90Chuck Allison

(Near the end)

� shu-ha-ri

Better Software 2008 91Chuck Allison

Bibliography

� Bertrand Meyer
� Agile Software Development
� Head-First Design Patterns
� Factory and Disposal Methods, Kevlin

Henny

Better Software 2008 92Chuck Allison

