
Functional Programming Makes a
Comeback
Chuck Allison

Better Software 2008

Observation

• Popular object-oriented languages have some
degree of support for functional programming
▫ Python, Ruby, C++, Java, C#, D, F#, Scala, Groovy

• C++, Java, and C# are adding even more
support

• What’s so cool about FP?

Objective

• To appreciate the contribution the functional
style of programming makes to problem solving

• To become familiar with the functional style of
programming in modern languages

Agenda

• What is Functional Programming?
• History of FP
•ML – The first Modern FP Language
• FP in Other Modern Languages
▫ Python, D, C++, Scala, C#

The First Programming Language!

Functional Programming
• A style (paradigm) of programming where
functions are the basic building blocks
▫ Functions are used for what they return
▫ Not for achieving side effects (e.g., assignment)

• Functions are “first-class” entities
▫ Can be passed as arguments, returned as results
▫ Can be created “on-the-fly”

• FP programs focus more on what you want
▫ Not so much on how to compute it

Key FP Features
• Higher-order functions
▫ Functions can be passed and returned

• Nested functions
▫ With closures (a type of delegate)

• Partial function application
▫ Aka “currying”

• No assignment statement
▫ High-level (and thread-safe) programming

• No loops
▫ Recursion preferred

Before Computers…

• …there was computation

• Mathematical operations and functions

• Symbolic manipulation
▫ a key focus of 20th Century mathematics

Great Moments in Computation

• Turing Machines
▫ Where imperative programming originated
▫ Led to FORTRAN, Algol, C, etc.

• Church’s Lambda Calculus
▫ Led to Lisp, Scheme, ML, Haskell, etc.

• Both happened in the 1930s!

Milestones in Functional Programming

• 1936 – Church’s Lambda Calculus
• 1958 – First release of Lisp
• Early 1970s – ML
▫ Static typing
▫ Type inference
▫ Function templates (“parametric polymorphism”)

• Mid 1970’s – Scheme (Lisp for the masses)
▫ Block scoping; tail recursion optimization

• 1990 – Haskell (Software Transactional Memory)
• 1998 – Erlang (Fault tolerant, Message Passing)

The First Modern Functional Programming Language

ML Topics

• Getting Started
▫ Types, Expressions, Bindings
▫ Functions, Type Inference, Tuples

• Lists and Recursion
▫ List operations, Pattern-Matching, Type Variables

• Higher-order Functions
▫ Lambda expressions (anonymous functions)
▫ Currying, Folding
▫ Nested Functions and Closures

The ML Interpreter
$ sml
Standard ML of New Jersey v110.67 [built: Thu Nov 15 10:18:08
2007]
- 1 + 2;
val it = 3 : int
- 1 - 2;
val it = ~1 : int
- "the" ^ "end";
val it = "theend" : string
- 2.0 + 3.0;
val it = 5.0 : real
- 2.0 + 5;
stdIn:5.1-5.8 Error: operator and operand don't agree [literal]

operator domain: real * real
operand: real * int
in expression:

2.0 + 5

- #"a";
val it = #"a" : char
- 1 = 2;
val it = false : bool
- 1 > 2 andalso 3 > 2;
val it = false : bool
- 1 < 2 orelse 3 > 2;
val it = true : bool
- 1.0 = 2.0;
stdIn:9.1-9.10 Error: operator and operand don't agree
[equality type required]
operator domain: ''Z * ''Z
operand: real * real
in expression:
1.0 = 2.0

- true orelse 1 div 0 = 0;
val it = true : bool
- if 1 > 0 then "greater" else "not"; (* an expression *)
val it = "greater" : string
- 2 / 5;
stdIn:11.1-11.6 Error: operator and operand don't agree
[literal]
operator domain: real * real
operand: int * int
in expression:
2 / 5

- 2.0 / 5.0;
val it = 0.4 : real
- 2 div 5;
val it = 0 : int

Basic ML Types

• int
• real
▫ Not an “equality type”
▫ Can’t mix with int

• string
• char
• bool
▫ andalso and orelse are short-circuiting

Binding Variables

• val keyword
• The type of the initializer expression becomes

the type of the initialized variable
▫ “type inference”

• It’s not really “variable”
▫ i.e., it’s not mutable
▫ can only be initialized

• But variables can be “rebound”

Variable Bindings

- val n = 2;
val n = 2 : int
- val m = n + 1;
val m = 3 : int
- val n = 10;
val n = 10 : int
- m;
val it = 3 : int

Basic Operators

• For Integers:
▫ +, -, *, div, mod, ~

• For Reals:
▫ +, -, *, /, ~

• For Strings:
▫ ^ (concatenation)

Functions in ML

• ML functions take exactly 1 argument

• That argument can be an aggregate
▫ tuple, list, etc.

• Parentheses not needed:
▫ f x;

Calling Functions in ML

- floor 2.5;
val it = 2 : int
- real 2;
val it = 2.0 : real
- explode "hello";
val it = [#"h",#"e",#"l",#"l",#"o"] : char list
- implode [#"h",#"e",#"l",#"l",#"o”];
val it = "hello" : string
- floor 2.6 + 1;
val it = 3 : int
- floor (2.6 + 2.0);
val it = 4 : int

Commonly Used Functions

• Numeric conversions:
▫ real, floor, ceil, round, trunc

• Character-to-integer conversion:
▫ chr, ord

• Character-to-string conversion:
▫ str, explode, implode

Defining Functions in ML

- fun square x = x * x;
val square = fn : int -> int
- square 2;
val it = 4 : int
- square 2 + 2;
val it = 6 : int
- square (2 + 2);
val it = 16 : int

Annotating Functions with Types
- fun square x:real = x*x; (* annotate argument type *)
val square = fn : real -> real
- square 2;
stdIn:2.1-2.9 Error: operator and operand don't agree [literal]

operator domain: real
operand: int
in expression:

square 2
- square 2.0;
val it = 4.0 : real
- square (real 2); (* Note paren placement! *)
val it = 4.0 : real
- fun square (x:real):real = x*x; (* annotate return type *)
val square = fn : real -> real

Defining Functions in ML

• fun keyword
• function name
• single parameter = expression;

• - fun max (x,y) = if x > y then x else y;
val max = fn : int * int -> int

(x,y) is a tuple

Tuples

• Can hold an arbitrary number of elements
▫ Of any type

• Accessed positionally with #1, #2, etc.

• Can perform tuple assignment

Tuple Access and Assignment

- val twonums = (2,3);
val twonums = (2,3) : int * int
- #1 twonums;
val it = 2 : int
- #2 twonums;
val it = 3 : int
- val (x,y) = twonums;
val x = 2 : int
val y = 3 : int
- x = #1 twonums;
val it = true : bool

Summary
Getting Started with ML

• ML is strongly typed
▫ no mixing of types in expressions
▫ types are statically determined

• Variables are bound to values
▫ the value can’t be changed
▫ but the variable can be rebound to another value

• Functions take a single argument and return a
single value
▫ Function bodies are a single expression

Exercises
Getting Started

• Write an ML function that takes a real number
and returns its cube (3rd power)

• Write an ML function that returns the smallest
of 3 integers

• Write an ML function that returns the sum of its
3 integer arguments

Lists in ML

• Must be homogeneous
▫ i.e., each element must be of the same type

• Stored as linked lists of pairs of pointers
▫ first element is the head (refers to a value)
▫ second element is the tail (refers to rest of list)
� is itself a list

Using Lists
- val a = [1,2,3];
val a = [1,2,3] : int list
- hd a;
val it = 1 : int
- tl a;
val it = [2,3] : int list
- hd (tl a);
val it = 2 : int
- null a;
val it = false : bool
- null [];
val it = true : bool
- nil;
val it = [] : 'a list

Basic List Operations

• Concatenation: @
▫ [1,2] @ [3,4] => [1,2,3,4]

• Construct a node: ::
▫ 1::[2,3,4] => [1,2,3,4]

• Determine head: hd
▫ hd [1,2,3,4] => 1

• Determine tail: tl
▫ tl [1,2,3,4] => [2,3,4]

• Length: length

Writing List-processing Functions

• Done with recursion to visit each list element

• Typical pattern:
▫ if list is empty

process base case of recursion
else

process head, recurse on tail

Writing a Length Function for Lists

fun mylen x =
if null x then 0
else 1 + length (tl x);

Another Recursive Function

(* Sum of squares of 0 through n *)
- fun sumsq n =
= if n = 0 then 0
= else n*n + sumsq (n-1);
val sumsq = fn : int -> int
- sumsq 2;
val it = 5 : int
- sumsq 3;
val it = 14 : int

Pattern Matching

- fun sumsq 0 = 0
= | sumsq n = n*n + sumsq (n-1);
val sumsq = fn : int -> int
- sumsq 2;
val it = 5 : int
- sumsq 3;
val it = 14 : int
- sumsq 0;
val it = 0 : int

mylen with Pattern Matching

- fun mylen nil = 0
= | mylen (h::t) = 1 + mylen t; (* h is not used *)
val mylen = fn : 'a list -> int (* a type variable *)
- mylen [];
val it = 0 : int
- mylen [1,2,3];
val it = 3 : int

Unused Variables

• If a variable won’t be used, you can use the
underscore for its name:
| mylen (_::t) = 1 + mylen t;

• This applies in other contexts:
- var (_,y) = (1,2);
val y = 2 : int

Type Variables
• Notice the 'a in the definition of mylen
• The operations of mylen are type independent
• Therefore, the type of the list can vary
- mylen ["hello", "goodbye"];
val it = 2 : int

• This is a form of polymorphism
▫ “Parametric Polymorphism”
▫ The inspiration for C++ function templates

• The type is fixed when the statement is compiled

Testing For List Membership

- fun member (_, nil) = false
= | member (x, h::t) = x = h orelse member (x,t);
stdIn:27.26 Warning: calling polyEqual (* Ignore this *)
val member = fn : ''a * ''a list -> bool
- member (2,[1,2]);
val it = true : bool
- member (3,[1,2]);
val it = false : bool
- member (1, nil);
val it = false : bool

The ' 'a Type Variable

• Remember that reals can’t be compared for
equality

• The member function requires equality types

• The type variable ''a stands for any equality
type
▫ can’t call this function on a list of reals!

Multiple Type Variables

- fun outer (x,_,z) = (x,z);
val outer = fn : 'a * 'b * 'c -> 'a * 'c
- outer (1,2,3);
val it = (1,3) : int * int
- outer ("a","b","c");
val it = ("a","c") : string * string

Reversing a List

- fun reverse nil = nil
= | reverse (h::t) = reverse t @ [h];
val reverse = fn : 'a list -> 'a list
- reverse [1,2,3];
val it = [3,2,1] : int list
- rev ["a","b","c"]; (* built-in function *)
val it = ["c","b","a"] : string list

Defining Local Variables

• The only locals we’ve seen are parameters

• The let expression defines local bindings

• They are used in the function body
▫ Which is a single expression, remember

The let Expression

- fun days2ms days =
= let
= val hours = days * 24.0
= val minutes = hours * 60.0
= val seconds = minutes * 60.0
= in
= seconds * 1000.0
= end;
val days2ms = fn : real -> real
- days2ms 1.5;
val it = 129600000.0 : real

A Local Function Definition

fun union (x, nil) = x
| union (x, head::rest) =

let
fun member (_, nil) = false
| member (x, h::t) = x = h orelse member (x,t)

in
if member(head, x) then union(x,rest)
else head::union(x,rest)

end;

- union (["a","b","c"],["b","c","d"]);
val it = ["d","a","b","c"] : string list

Summary
Lists and Recursion

• Lists have a head and a tail
▫ the empty list is denoted by nil

• Patterns are matched in the order they appear

• ML allows parametric polymorphism
▫ implicit type variables

• Place local bindings in a let block

Exercises
Lists and Recursion

• Write a function named repeats that
determines if a list has two adjacent equal
elements

• Write a function named unique that returns
elements of a sorted list but ignoring duplicates.

• After reviewing the code or union, write a binary
function named intersection, that returns
only those elements common to both its input
lists.

Functions are First-Class Entities

• Functions are like other values in that:
▫ they can be passed as arguments to other

functions
▫ they can be returned from functions
▫ they can be bound to variables

• A function that accepts or returns another
function is a called a higher-order function
▫ very useful!

Using Functions as Objects

- length;
val it = fn : 'a list -> int
- val f = length;
val f = fn : 'a list -> int
- fun apply (f,x) = f x;
val apply = fn : ('a -> 'b) * 'a -> 'b
- apply (f, [1,2,3]);
val it = 3 : int

Using Operator Functions

- op <;
val it = fn : int * int -> bool
- (op <) (3,4);
val it = true : bool
- val g = op <;
val g = fn : int * int -> bool
- g(4,3);
val it = false : bool

Quicksort in ML
fun quicksort (cmp, nil) = nil
| quicksort (cmp, pivot::rest) =

let
fun partition nil = (nil,nil)
| partition(x::xs) =

let
val (below, above) = partition xs

in
if cmp(x,pivot) then (x::below, above)
else (below, x::above)

end;
val (below, above) = partition(rest)

in
quicksort(cmp, below) @ [pivot] @ quicksort(cmp, above)

end;

Using Quicksort

- val words = ["go","ahead","make","my","day"];
val words = ["go","ahead","make","my","day"] : string list
- quicksort(String.<,words);
val it = ["ahead","day","go","make","my"] : string list
- quicksort(String.>,words);
val it = ["my","make","go","day","ahead"] : string list

Anonymous Functions

• Called lambda expressions in other FP
languages

• Sometimes it is more convenient to create a
function on the fly

• Uses fn arg => expr syntax

- quicksort(fn (x,y) => x < y, [3,2,1]);
val it = [1,2,3] : int list
- quicksort(fn (x,y) => x > y, [1,2,3]);
val it = [3,2,1] : int list

Currying

• Named after Haskell Curry
• A flexible way of providing multiple arguments

to a functions
• Allows partial function evaluation
▫ So you can provide the other arguments later

• Technique:
▫ For all but the last parameter, a function is

returned that takes the next parameter
▫ The last returned function returns the actual value

Currying Syntax

- fun f a = fn b => a + b;
val f = fn : int -> int -> int
- f 1;
val it = fn : int -> int
- f 1 2;
val it = 3 : int
- val g = f 1;
val g = fn : int -> int
- g 2;
val it = 3 : int

Currying Shorthand

- fun f a b = a + b;
val f = fn : int -> int -> int
- f 1;
val it = fn : int -> int
- f 1 2;
val it = 3 : int
- val g = f 1;
val g = fn : int -> int
- g 2;
val it = 3 : int

A Curried Quicksort
fun quicksort cmp L = if null L then nil else

let
val (pivot, rest) = (hd L, tl L)
fun partition nil = (nil,nil)
| partition(x::xs) =

let
val (below, above) = partition xs

in
if cmp(x,pivot) then (x::below, above)
else (below, x::above)

end;
val (below, above) = partition(rest)

in
quicksort cmp below @ [pivot] @ quicksort cmp above

end;

Using the Curried Quicksort
- use "/Users/chuck/sort2.sml";
[opening /Users/chuck/sort2.sml]
val quicksort = fn : ('a * 'a -> bool) -> 'a list -> 'a list
val it = () : unit
- val sortasc = quicksort (op <);
val sortasc = fn : int list -> int list
- sortasc [3,2,1];
val it = [1,2,3] : int list
- sortasc [5,4,3];
val it = [3,4,5] : int list
- val sortdesc = quicksort (op >);
val sortdesc = fn : int list -> int list
- sortdesc [1,2,3];
val it = [3,2,1] : int list
- sortdesc [3,4,5];
val it = [5,4,3] : int list

Standard Higher-Order Functions
• map
▫ Applies a unary function to each list element
▫ Returns the resulting list

• foldl
▫ Reduces a list to a value
▫ Applies a binary function to each element with the

accumulated value
▫ Works left-to-right

• foldr
▫ Like foldl but works right-to-left

• All are curried

Using map
- map;
val it = fn : ('a -> 'b) -> 'a list -> 'b list
- map (fn x => x + 1) [1,2,3];
val it = [2,3,4] : int list
- val add1 = map (fn x => x + 1);
val add1 = fn : int list -> int list
- add1 [1,2,3];
val it = [2,3,4] : int list
- add1 [2,3,4];
val it = [3,4,5] : int list

- map (op +) [(1,2),(3,4),(5,6)];
val it = [3,7,11] : int list

Using foldl

(* Add list elements *)
- foldl (op +) 0 [1,2,3]; (* (((0+1)+2)+3), or… *)
val it = 6 : int (* op+(3,op+(2,op+(1,0))) *)

(* Multiply them *)
- foldl (op *) 1 [2,3,4]; (* op*(4,op*(3,op*(2,0))) *)
val it = 24 : int

(* Sum of squares: f(3,f(2,f(1,1))) *)
- foldl (fn (x, sofar) => sofar + x*x) 0 [1,2,3];
val it = 14 : int

Leveraging Currying

- val addup = foldl (op +) 0;
val addup = fn : int list -> int
- addup [1,2,3];
val it = 6 : int
- addup [2,3,4];
val it = 9 : int
- val concat = foldl (op ^) "";
val concat = fn : string list -> string
- concat ["how","now","brown","cow"];
val it = "cowbrownnowhow" : string

Using foldr

- val concat = foldr (op ^) "";
val concat = fn : string list -> string
- concat ["how","now","brown","cow"];
val it = "hownowbrowncow" : string
- val append5 = foldr (op ::) [5];
val append5 = fn : int list -> int list
- append5 [1,2,3];
val it = [1,2,3,5] : int list

Question

• append5 is a little too specific

• How can we write a generic append?
▫ i.e., build append(n) on-the-fly

A Generic append

- fun append n = foldr (op ::) [n];
val append = fn : 'a -> 'a list -> 'a list
- val append3 = append 3;
val append3 = fn : int list -> int list
- append3 [0,1,2];
val it = [0,1,2,3] : int list

Nested Functions and Closures
• append3made a partial call to append
▫ A function, not a value, was returned

• The returned function used a binding from
outside of its scope (n)

• The binding for n needs to be available after
append returns

• What append actually returned is a closure
▫ a function coupled with its lexical environment

More Examples

- fun bor bools = foldr (fn (a, b) => a orelse b) false bools;
val bor = fn : bool list -> bool
- bor [false,true,false];
val it = true : bool
- fun member x L = bor (map (fn y => x = y) L);
stdIn:82.5 Warning: calling polyEqual
val member = fn : ''a -> ''a list -> bool
- member 5 [3,4,5];
val it = true : bool

Design Exercise: Function Composition

• Data processing is often a sequence of
transformations on data
▫ e.g., remove punctuation, then change to lower case,

then change all e’s to 3’s
• Packaging a sequence of functions into a single,

comoposite function is called function composition
• f(s) <==> threes(lower(nopunct(s)))
• Just as currying allows reuse of a partially-evaluated

function, composition allows a sequence of
operations to be reused as a unit

Solution Approach

• We will be given a list of unary functions
▫ This example requires the input and output types

to be the same
• We need to return a unary function that applies

each original function in reverse list order to
obtain the final result

• Sounds like a job for lists and foldr

Using compose
use "/Users/chuck/compose.sml";
val compose = fn : ('a -> 'a) list -> 'a -> 'a
val it = () : unit
- fun add1 x = x + 1;
val add1 = fn : int -> int
- fun mult3 x = x*3;
val mult3 = fn : int -> int
- fun sub5 x = x - 5;
val sub5 = fn : int -> int
- val f = compose [add1,mult3,sub5];
val f = fn : int -> int
- f(1) ;
val it = ~11 : int
- f(20);
val it = 46 : int

Implementing compose

fun compose flist =
fn x => foldr (fn (f, sofar) => f sofar) x flist;

We’ll see this again in other languages…

FP Summary So Far
• Variables do not change
▫ no shared memory problems (globals, threads,

etc.)
• No loops
▫ => no loop errors
▫ use recursion instead

• Very high-level programming
▫ facilitated by higher-order functions, anonymous

functions, nested functions, currying
▫ concise code!

FYI

• OCaml is an object-oriented ML
• Compiles to native code
▫ runs very fast!

• Supports procedural, functional, and OO
programming

• F# on .NET

Exercises
Higher-Order Functions

• Write a curried version of union; use foldl or
foldr

• Repeat for intersection
• Write a curried version of append
▫ Hint: use foldr; then “cons” (::) elements of the

first list with the second

Topics
Other Languages

• FP in Python
• FP in D
• FP in C++
• FP in Scala

About Python

• Python is a dynamically typed language
▫ there is no “compile time”
▫ dynamic OO programming

• Interpreted (but no JIT compiler)
• Easy to learn, read
▫ indentation is required

• Lists and tuples are indexable
▫ Lists are mutable; tuples are not

Lists in Python
>>> L=[1,2,2,3,3,3]
>>> for n in L: print L.count(n),
1 2 2 3 3 3
>>> L.index(2)
1
>>> L.append(5)
>>> L
[1, 2, 2, 3, 3, 3, 5]
>>> L.extend([5,5,5,5])
>>> L
[1, 2, 2, 3, 3, 3, 5, 5, 5, 5, 5]
>>> for i in range(4): L.insert(6+i, 4)
>>> L
[1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5]

Slices
words = "now is the time".split()
print words
print words[1]
print words[0:2]
print words[1:]
print words[:2]
print words[-1]

''' Output:
['now', 'is', 'the', 'time']
is
['now', 'is']
['is', 'the', 'time']
['now', 'is']
time
'''

Defining Functions in Python

• def keyword

• Arguments can be collected into a tuple
parameter

• Tuples can be flattened into arguments

• Python supports nested functions and closures

Functions in Python
def h(x):

return x + 2

def r(s):
return s*2

g calls f on x:
def g(f, x):

return f(x)

print g(h,3) # prints 5
print g(r,'two') # prints twotwo
#print g(2,3) # error: 2 is not callable

Arguments and Tuples
def varargs(*args):

for arg in args:
print arg

varargs("one","two")
varargs(3,4,5)

''' Output:
one
two
3
4
5
'''

def fixargs(a,b):
print 'a =', a
print 'b =', b

pair = (1,"two")
fixargs(*pair)

''' Output:
a = 1
b = two
'''

Quicksort in Python
Uses List Comprehensions

def qsort(L):
if len(L) <= 1: return L
return qsort([lt for lt in L[1:] if lt < L[0]]) \

+ [L[0]] \
+ qsort([gt for gt in L[1:] if gt >= L[0]])

FP in Python

• map = same as ML
• foldl = reduce
• There is no foldr
▫ but you can easily traverse lists backwards with

the reversed iterator
• Currying is not directly supported
▫ easily provided with a 7-line “wrapper” function

Python FP Examples
>>> map(lambda x: -x, [1,2,3])
[-1, -2, -3]
>>> [-x for x in [1,2,3]]
[-1, -2, -3]
>>> map(lambda x,y: x+y, [1,2,3],[4,5,6])
[5, 7, 9]
>>> map(operator.add, [1,2,3],[4,5,6])
[5, 7, 9]
>>> reduce(operator.add, map(lambda x: -x, [1,2,3]))
-6
>>> [reduce(operator.add, x) for x in [(1,2), (3,4)]]
[3, 7]
>>> [x for x in [1,2,3] if x > 2]
[3]

compose in Python
def compose(*funs):

return lambda x: reduce(lambda z,f: f(z), \
reversed(funs), x)

def add1(x):
return x + 1

def mult3(x):
return x * 3

def sub5(x):
return x - 5

f = compose(add1,mult3,sub5)
print f(1) # -11
print f(20) # 46

Exercise
The Last One!

• Implement union in Python
▫ takes the two sets as input

• Implement addn in Python
▫ use it to add 5 to an existing integer list, returning

a new list

The D Programming Language
• A “Modern C++”
▫ higher-level, cleaner syntax

• Supports systems programming
▫ and generates native executables

• Garbage collected
• Other features
▫ automated unit testing
▫ contract programming
▫ Python-like module system
▫ FP!

Introducing D
A Word Count Program (output on next slide)
void wc(string filename) {

auto words = split(cast(string) read(filename));
int[string] counts;
foreach (word; words)

++counts[word];
foreach (w; counts.keys.sort)

writefln("%s: %d", w, counts[w]);
}

// A simple driver: process all files arguments
void main(string[] args) {

foreach(f; args[1..$]) { // Start at second arg ([1])
writefln("\n%s:", f);
wc(f);

}
}

wc.txt:
%d",: 1
([1]): 1
(f;: 1
(w;: 1
(word;: 1
++counts[word];: 1
//: 2
=: 1
all: 1
arg: 1
w,: 1
wc(f);: 1
wc(string: 1
words: 1
words): 1
writefln("%s:: 1
writefln("\n%s:",: 1
{: 3
}: 3

FP in D

• Does not have map, foldr, or foldl
▫ but it has foreach and foreach_reverse

• Supports nested functions and closures
▫ Closures in D are called delegates
▫ Delegates couple a function with either an

enclosing function, an object, or a class

compose in D
non-generic

alias int function(int) F;
alias int delegate(int) D;

D compose(F[] funs) {
int doit(int n) {

int result = n;
foreach_reverse (f; funs)

result = f(result);
return result;

}
return &doit;

}

Using compose

void main() {
F[] funs;
funs ~= function int(int x){return x+1;};
funs ~= function int(int x){return x*3;};
funs ~= function int(int x){return x-5;};
auto c = compose(funs); // type inference
writeln(c(1)); // -11
writeln(c(20)); // 46

}

A Generic compose

T delegate(T) compose(T)(T function(T)[] funs)
{

T doit(T n) {
T result = n;
foreach_reverse (f; funs)

result = f(result);
return result;

}
return &doit;

}

Using the Generic compose

void main() {
string function(string)[] sfuns;
sfuns ~= function string(string s) {return s ~ 's';};
sfuns ~= function string(string s) {return s[1..$];};
auto c2 = compose(sfuns);
writeln(c2("stale")); // "tales"

}

FP in C++

• Uses function objects
▫ objects with a function-call operator (operator())
▫ the object’s data constitutes the “closure”

• map = transform
• foldl = accumulate
• “Lists” can be arrays, vectors, linked-lists, etc.
▫ any STL-conforming “sequence”

• 50+ sequence algorithms in the standard library

Defining a C++ Function Object
#include <algorithm>
#include <iostream>
using namespace std;

class addn {
int n;

public:
addn(int n) : n(n) {}
int operator()(int x) {

return x + n;
}

};

Using addn

int main() {
addn add5(5);
cout << add5(10) << endl; // 15

int a[] = {1,2,3,4,5};
transform(a, a+5, a, addn(10)); // 11 12 13 14 15
for (int i = 0; i < 5; ++i)

cout << a[i] << ' ';
cout << endl;

}

Selected C++ Function Objects
Predicates
equal_to
not_equal_to
greater
less
greater_equal
less_equal
logical_and
logical_or
logical_not

Arithmetic
plus
minus
multiplies
divides
modulus
negate

A Simple Filter
// Add an input integer to each number in a file

int main(int argc, char* argv[]) {
int n = 0;

// Get n from command line
if (argc > 1)

n = atoi(argv[1]);

ifstream inf("nums.dat");
ofstream outf("nums.out");
transform(istream_iterator<int>(inf),

istream_iterator<int>(),
ostream_iterator<int>(outf," "),
bind2nd(plus<int>(),n));

}

Using accumulate
int main() {

int a[] = {1,2,3,4};
cout << accumulate(a, a+4, 0) << endl;

string s[] = {"eat","my","dust"};
string result = accumulate(s, s+3, string());
cout << result << endl;

cout << accumulate(a,a+4,1,multiplies<int>()) << endl;
}

/* Output:
10
eatmydust
24
*/

compose in C++
typedef int (*Fun)(int);

class Composer {
private:

const vector<Fun>& funs;
static int apply(int sofar, Fun f) {

return f(sofar);
}

public:
Composer(const vector<Fun>& fs) : funs(fs) {}
int operator()(int x) const {

return accumulate(funs.rbegin(), funs.rend(),
x, apply);

}
};

Using compose
int add1(int x) {

return x + 1;
}
int mult3(int x) {

return x * 3;
}
int sub5(int x) {

return x - 5;
}

int main() {
vector<Fun> funs;
funs.push_back(add1);
funs.push_back(mult3);
funs.push_back(sub5);
Composer comp(funs);
cout << comp(1) << endl; // -11
cout << comp(20) << endl; // 46

}

Scala

• A FP front-end to the JVM
▫ statically typed
▫ type inference

• Pretty much a copy of ML
▫ pattern matching
▫ foldright, foldleft, etc.

compose in Scala
object Compose {
def compose3[T](flist: List[(T) => T]): (T) => T =
(x: T) => flist.foldRight(x)

((f: (T) => T, sofar: T) => f(sofar))

def main(args: Array[String]) {
val addOne = (x: Int) => x + 1
val addTwo = (x: Int) => x + 2
val addThree = (x: Int) => x + 3
val addFour = compose(List(addOne,addOne,addOne,addOne))
println(addFour(1)) // 5
val addSix = compose(List(addOne, addTwo, addThree))
println(addSix(1)) // 7

}
}

union in Scala
object Union {
def union[T](a: List[T], b: List[T]): List[T] =
(a, b) match {
case (x, Nil) => x
case (x, head :: rest) => {
if (x contains head)
union(x, rest)

else
head :: union(x, rest)

}
}

def main(args: Array[String]) {
println(union(List("a", "b", "c"), List("b", "c", "d")))

}
}

FP in C# 3.0

• As in D, delegates act as closures

• Lambdas via anonymous delegates
• Type inference with var

addn in C# 3.0

public static Func<int, int> addn(int n)
{

return new Func<int, int>(x => x + n);
}

…

var f2 = addn(5);
Console.WriteLine(f2(2)); // 7

compose in C# 3.0

public static Func<T, T> Compose<T>(IEnumerable<Func<T, T>> funcs)
{

return new Func<T, T>(i =>
{

T result = i;
foreach (var func in funcs.Reverse())
{

result = func(result);
}
return result;

});
}

Using compose
IEnumerable<Func<int, int>> t = new List<Func<int, int>>

{
new Func<int, int>(x => x + 1),
new Func<int, int>(x => x * 3),
new Func<int, int>(x => x - 5)

};

…

var c = Compose(t);
Console.WriteLine(c(1)); // -11
Console.WriteLine(c(20)); // 46

D 3.0

• Will add “pure functions”
▫ functions that don’t change state

• Will add a bunch of algorithms
• Will support full FP and STM (a la Haskell)

Java

• Closures proposal
▫ somewhat controversial

• Inner Classes are a poor-man’s closure
• Algorithms have been around via JGL for over

10 years

C++0x

• More flexible lambda expressions

• More flexible function-argument binding

