
1

Got Quality?

A Perspective on Code Quality
Chuck Allison

The Nature of Software

• Many skills are required to produce quality 
software

• These skills are not possessed in toto by a 
single individual



2

BANGKOK (Reuters – May 12, 2003) – Security guards 
smashed their way into an official limousine with 
sledgehammers on Monday to rescue Thailand’s finance 
minister after his car’s computer failed… All doors and 
windows had locked automatically when the computer 
crashed, and the air-conditioning stopped, officials said. 
“We could hardly breathe for over 10 minutes… It took 
my guard a long time to realize that we really wanted the 
window smashed so that we could crawl out. It was a 
harrowing experience.”



3

“Malfunctions caused by bizarre and frustrating glitches 
are becoming harder and harder to escape now that 
software controls everything from stoves to cell phones, 
trains, cars, and power plants.”

-- “Spread of buggy software raises new questions”, CNN.com, April 
27, 2003.

Summit on Code Quality

• Portland, Oregon, January 15-17, 2003
• Agenda:

– How bad are things now?
– How did they get that way?
– How can they be fixed?



4

Attendees

• Scott Meyers
• Bruce Eckel
• Chuck Allison
• Bill Venners

• Joshua Bloch
• Alistair Cockburn
• Matt Gerrans
• Kevlin Henney
• Andrew Hunt
• Angelika Langer
• Pete McBreen
• Chris Sells
• Randy Stafford
• Dave Thomas

How Bad Are Things Now?
• Scott Meyers is Upset

– that should be enough to get our attention!
• So are a lot of other people:

– ~50% of projects never get deployed
– too many programs hang or fail to meet spec.
– schedule/budget overruns are a cliche’
– help desks are woefully understaffed and overworked
– NIST* estimates the cost of software bugs in the U.S. 

is $59.5 billion annually

* (NIST)  http://www.nist.gov/director/prog-ofc/report02-3.pdf



5

Software Disasters

• Mars Polar Lander
– www.nasa.gov/newsinfo/marsreports.html

• American Airlines Flight 965, Dec. 1995
– see “The Inmates are Running the Asylum” by Alan 

Cooper

• $60,000,000,000 wasted annually is a disaster!

About the NIST Report

• Of the $59.5 billion lost, $22.2 billion is 
estimated preventable by improved testing

• So what caused the other $37.3 billion?



6

What Does This Code Print?

• float x = 1.0f;
float y = 0.2f;
x = x - y - y - y - y - y
cout << x << endl;

• -1.49012e-08

Patriot Missile Bug
• On the night of the 25th of February, 1991, a Patriot missile system 

operating in Dhahran, Saudi Arabia, failed to track and intercept an 
incoming Scud. The Iraqi missile impacted into an army barracks,
killing 28 U.S. soldiers and injuring another 98. The cause of the 
missile system failing to defend against the incoming Scud was 
traced back to a bug in Patriot’s radar and tracking software.

• The algorithm used to predict the next air space to scan by the radar 
requires that both velocity and time be expressed as real numbers. 
However, the Patriot’s computer only has 24 bit fixed-point registers. 
Because time was measured as the number of tenth-seconds, the 
value 1/10, which has a non-terminating binary expansion, was 
chopped at 24 bits after the radix point. The error in precision grows 
as the time value increases, and the inaccuracy resulting from this is 
directly proportional to the target’s velocity. 



7

Floating-point Arithmetic

• Becoming an “ethical issue”
• How many developers understand:

– Machine epsilon
– Changing density of floating-point numbers
– ULPS

• Required Reading:
– What Every Computer Scientist Should Know About 

Floating-point Arithmetic, by David Goldberg

Weinberg’s Laws

• Gerald Weinberg
• Professionally Pre-dates FORTRAN!



8

Weinberg’s First Law

• “Progress is made on alternate Fridays.”

Weinberg’s Second Law

• “If builders built buildings the way programmers 
wrote programs, then the first woodpecker that 
came along would destroy civilization.”



9

Weinberg’s Third Law

• “An expert is a person who avoids the small 
errors while sweeping on to the grand fallacy.”

How Did Things Get So Bad?

• The effect of:
– Management
– Development tools
– Programmer skill level
– … among other things



10

Haste Makes Waste

• “The purpose of publishing this piece of code is 
to let you see that working under pressure can 
result in a marked deterioration of code quality.”

-- Francis Glassborow, You Can Do It!, page 307.

Technical Terms
From the Mensa Invitational

• Change an existing word by altering, deleting, or 
adding a single letter, and give a new definition

• Example:
Intaxication: Euphoria at getting a tax refund, 
which lasts until you realize it was your money to 
start with. 



11

Technical Term
From the Mensa Invitational

• Dopeler Effect:

“The tendency of stupid ideas to seem smarter 
when they come at you rapidly.”

Stupid Management Tricks

• Expect the impossible from the under-supported
– micro-manage scheduling and technical decisions
– demand overtime

• Rush to meet a market window
– Not always a bad thing
– But don’t allow for periodic code “clean-up”

• Don’t support needed training/mentoring
– My experiences with NASA, Hughes Aircraft



12

“I have met managers who would rather fail 
knowing whom to blame rather than succeed 
without knowing to whom to give credit.”

-- Gerald Weinberg, Keynote Address, Agile Development conference, 
August 2003

Your staff is very, very scary

• People have been trying to eliminate 
programmers for years
– It’s Black Magic

• COBOL
• 4GLs
• Visual BASIC



13

The Deception of Visual, Event-
driven Programming
• Only deals with UI
• Seems simple, but encourages poor practice

– Prototypes become products before their time
– UI should be totally separate from object model
– Programming is not Mouse Engineering

• “Who Moved My State”, C/C++ Users Journal, 
April 2003, Miro Samek

• Programmers don’t need to design GUIs
– Let the users do it!

“I Click, Therefore I Program”

• Tools like Visual BASIC have “lowered the bar”
for entering the field of programming
– “90-day wonders” have filled the ranks

• thanks in part to the dot-com boom
– They build screens, not software

• Their numbers exceed our capacity to properly 
mentor them
– We’re losing this “Battle of the Exponents”
– “Dumbing down” programming has back-fired



14

The Tidal Wave of Trainees
(from Alistair Cockburn)
• Training:
• 3 weeks of training per person @ $2,000 /week
• 6 work months / person relearning
• Programmers in company:
• 6 200 3,000 programmers
• 36K$         1.2M$ 18M$ direct training cost
• 5 100 1,500 work-yrs spent relearning

Programming is more than Visual

• “The effective exploitation of his powers of 
abstraction must be regarded as one of the most 
vital activities of a competent programmer.”
-- Dijkstra



15

Programming will always be difficult
“Programming will remain very difficult, because 

once we have freed ourselves from the 
circumstantial cumbersomeness, we will find 
ourselves free to tackle the problems that are 
now well beyond our programming capacity.”
-- Dijkstra

“Architecture degradation begins simply enough. 
When market pressures for key features are high 
and the needed capabilities to implement them 
are missing, an otherwise sensible engineering 
manager may be tempted to coerce the 
development team into implementing the 
requested features without the requisite 
architectural capabilities.”
-- Luke Hohmann, Beyond Software Architecture

The Degradation of Software Quality



16

Technical Debt

• Market and budget pressures can “require”
cutting corners
– This shouldn’t be the “norm”, but it is

• This constitutes a technical “debt”
– The software is not in a state suitable for long-term 

maintenance
– Such a system must be abandoned before its time

Software Entropy

• Entropy: 
– A measure of the disorder in a closed system. 
– Inevitable and steady deterioration of a system.

• Software Entropy
– Code can easily become an unmanageable 

patchwork
– Complexity encourages disorder

• How do you fight entropy?



17

Rearchitecting/Refactoring
Paying-off your Technical Debt

• Improving the internal design of existing code
• Examples:

– Add parameter
– Extract class
– Extract hierarchy
– Extract method
– Substitute algorithm
– Replace parameter with method…

Post-release Entropy Reduction
(Luke Hohmann)

• No time for refactoring near release
– Quick hacks pay off near release time
– Market windows are important

• There must be time to refactor after release
– Otherwise entropy kills you prematurely
– Yes, there is a short-term cost
– The long-term reduction of technical debt is worth it!



18

Code Quality without PRER
(suggested by Randy Stafford)

Release 1 Release 2 Release 3

Co
de

 Q
ua

lit
y

Time

Code Quality with PRER
(suggested by Randy Stafford)

Release 1 Release 2 Release 3

Co
de

 Q
ua

lit
y

Time



19

Technical Debts Interact
(from Alistair Cockburn)

• First maintenance visit: 1 + u
• Second visit: 1 + u + v + uv (interaction)

– approximates 1 + 2u + u2

• Third visit: 1 + u + v + w + uv + uw + vw + uvw
– approximates 1 + 3u + 3u2 + u3 = (1 + u)3

Alistair Cockburn ©Humans and Technology, Inc., 2003 Slide 1

Changes slow the 
business down!

Too expensive to change (dead product)!

Poor code quality penalizes exponentially;
Cleaning up penalizes linearly.

Cost 
to 
update 
the 
software

Cleaning up: 
cost = r (“refactoring to clean code”)
cumulative cost = 1+r+r+r+... 

= 1 + n*r

Not cleaning up:
cost = u (“understanding the worse code”)
cumulative cost = (1)(1+u)(1+u)(1+u)...  = (1 + u)n

Time (actually,  number of changes made)



20

True or False?

• “It is just as easy to write good software as it is 
to write bad software”…

• It is if you know how!

Don’t find bugs, avoid them

• “Those who want really reliable software will 
discover that they must find means of avoiding 
the majority of bugs to start with, and as a result 
the programming process will become cheaper. 
If you want more effective programmers, you will 
discover that they should not waste their time 
debugging, they should not introduce the bugs 
to start with.”
– Dijkstra



21

The Productivity Curve
(from Angelika Langer)

The Cost of Competence

• Less than the cost of incompetence
– Assertion: Changing curves is cheaper than the 

consequences of producing poor quality
• Proof: Japanese Auto Industry

• Mentoring vs. Training
– A trainer loves ‘em and leaves ‘em

• “drinking from the fire hose” approach
• although this can be a good “jump start”

– A mentor takes an apprentice under his wing
• “Expert within earshot”



22

Technical Term
From the Mensa Invitational

• Bozone:

“The substance surrounding stupid people that 
stops bright ideas from penetrating. The bozone
layer, unfortunately, shows little sign of breaking 
down in the near future.”

Stupid Programmer Tricks
• Poor design

– poor choice of algorithm or data structure
– not enough critical thinking up front

• bug prevention is better than cure
• Reinventing the Proverbial Wheel

– insufficient mastery of library, tools, and techniques
• Many don’t continue to learn

– stuck in their initial “imprint”
• Copy-and-paste “reuse”

– automated bug replication!
• Inadequate testing/error handling



23

The Evils of Code Duplication

• Two Forms
– Explicit:

• You copy and paste code (bugs)
• You should’ve extracted a function to call

– Implicit:
• You create similar functions
• You should extract the common part

• Becomes a maintenance nightmare
• Example: Manifest constants, C++ string class

Manifest Constants

• Better to use symbols instead of magic numbers
– Only have to change them in one place
– No risk of getting one of the values wrong

• All code should follow this pattern:
– Have only one definition
– A form of “automation”

• Because you’re not repeating yourself!



24

A C++ String Class

• Constructor allocates memory
• Destructor releases it:

class String
{

char* data;
public:

String(const char* str = "") {
data = new char[strlen(str) + 1];
strcpy(data,str);

}
~String() {

delete [] data;
}

};

A C++ String Class

• What about copying strings?
• Need a Copy and Copy-Assignment:

String(const String& s) {
data = new char[strlen(s.data) + 1];
strcpy(data, s.data);

}
String& operator=(const String& s) {

if (this != &s) {
char* newData = new char[strlen(s.data) + 1];
strcpy(newData, s.data);
delete [] data;
data = newData;

}
return *this;

}



25

A C++ String Class
• Factor out common code into a private member 

function:

char* dup(const char* from) {
char* to = new char[strlen(from) + 1];
return strcpy(to, from);

}

An aside: C++0x will have delegating constructors

A C++ String Class

• Now call it from all 3 places:
String(const char* str = "") {

data = dup(str);
}
String(const String& s) {

data = dup(s.data);
}
String& operator=(const String& s) {

if (this != &s) {
char* newData = dup(s.data);
delete [] data;
data = newData;

}
return *this;

}



26

Practices that Work
• DRY (don’t repeat yourself)
• Find invariants and assert them
• Design in terms of interfaces

– separate interface and implementation
• Minimize coupling, maximize cohesion
• Test-first programming
• Pair programming (review as you go)
• Automate builds, tests, deployments
• Study good code
• Keep a technical diary

Practices that Work
• Write to be read

– use a consistent style
– publish your code somewhere

• Avoid premature optimization
– use a profiler

• Have post-partum reviews
• Design in public places (white board)
• Refactor mercilessly

– “remove to improve” (omit needless code)
• Take pride in your work



27

Revealing Questions

• Are any of the practices news to you?
– probably not

• Do you employ them?
• Do your colleagues employ them?

– mentor them

Pride Implies Ownership
• “[The  Company] shall not be liable in any manner whatsoever for 

results obtained for using this software. THESE MATERIALS ARE 
PROVIDED ‘AS-IS’ WITHOUT WARRANTY OF ANY KIND… [THE 
COMPANY] AND ITS SUPPLIERS DISCLAIM ANY AND ALL 
WARRANTIES AND CONDITIONS, EITHER EXPRESS OR 
IMPLIED.”

• “Bugs would be greatly reduced if software makers were held legally 
responsible for defects. ‘Software is being treated in a way that no 
other consumer products are,’ said Barbara Simons, former 
president of the ACM. 'We all know that you can’t produce 100% 
bug-free software. But to go to the other extreme, and say that 
software makers should have no liability whatsoever, strikes me as 
absurd.'” (CNN.com)



28

Talent vs. Knowledge

• The practices just mentioned are more valuable 
than understanding the technology du jour

• You can know Java, XML, XSLT, Jini, JNI, 
J2EE, C++, STL, Bluetooth, SOAP, … and still 
produce low quality

• Master the enduring fundamentals first
– Technology is a vehicle for quality, not its substance

The Great Programmer
(from Gerald Weinberg)

• Has a Service Posture
• Learns continually, no matter how skilled he is today
• Openly shares his code, insights and expertise
• Gives credit where credit is due

– colleagues, vendors, good management, staff, family)

• Does not sacrifice quality or integrity for job security
• Takes care of his whole self (he rests, plays…)



29

Practical Excellence
Be True to your Inner Programmer

Highly ethical programmers do things as correctly 
as they can all the time. They fight management’s 
stupid decisions. To an ethical programmer, some 
things (e.g., buffer overrun vulnerabilities) just 
cannot happen.”

-- Jack Ganssle

Practical Excellence
Care, Be Connected

• “When one isn't dominated by feelings of 
separateness from what he's working on, then 
one can be said to "care'' about what he's doing. 
That is what caring really is, a feeling of 
identification with what one's doing. When one 
has this feeling then he also sees the inverse 
side of caring, Quality itself.”

-- Robert Pirsig, Zen and the Art of Motorcycle Maintenance



30

Practical Excellence
Persist in working at Meaningful Change

• “You cannot undo a [or introduce a new] habit by 
any single act of willpower; only a time-
consuming training process can undo [or form] a 
habit.”

-- Jef Raskin

Practical Excellence
Keep Current

• "In times of change learners inherit the earth 
while the learned find themselves beautifully 
equipped to work in a world that no longer 
exists.“
-- Eric Hoffer

• “He who learns from one who is learning drinks 
from a running stream.”


	r: 


