
Thinking in C
Foundations for Java and C++
by Chuck Allison

© 1998 Mindview, Inc. All Rights Reserved
© 1998 Fresh Sources. All Rights Reserved

Thinking in C ©1998 Fresh Sources 2

Introduction
• This course covers what you need

to know to move on to either Java
or C++
– It is an effective but not completely

rigorous course on C
– We cover just enough to quickly

prepare you to move on to the other
languages

Thinking in C ©1998 Fresh Sources 3

About C
• An extremely popular systems

programming language, first used
to write operating systems at AT&T

• Very portable & efficient
• Also popular for business &

scientific applications
• C++ is a superset of C
• Java draws heavily on C++

Thinking in C ©1998 Fresh Sources 4

Course Outline
1 Getting Started
2 Fundamental Data Types
3 Operators
4 Controlling Program Flow
5 Compound Data Types
6 Programming with Functions
7 Pointers 101
8 Pointers 102

Thinking in C ©1998 Fresh Sources 5

1: Getting Started
• A First Look
• C Program Components

– statements
– comments
– include files
– the main() function

Thinking in C ©1998 Fresh Sources 6

A First Look
/* first.c: A First Program */
#include <stdio.h>

int main()
{

puts("** Welcome to Thinking in C **");
puts("(You'll be glad you came!)");
return 0;

}

** Welcome to Thinking in C **
(You'll be glad you came!)

Thinking in C ©1998 Fresh Sources 7

C Program Components
• A C program is a collection of

functions
– a.k.a. procedures, subroutines
– and optional global variables
– programs can span multiple files

• A function is a collection of
statements
– enclosed by {braces}
– main() is special

Thinking in C ©1998 Fresh Sources 8

Building a C Executable

f1.h

s1.c s2.c

f2.h

f3.h

s1.obj s2.obj

prog.exe

Thinking in C ©1998 Fresh Sources 9

Statements & Comments
• Statements contain one or more

expressions
– function calls, numeric operations, etc.

• End with a semi-colon
• Do not have to be on their own line

– C uses a free-format syntax
• Comments are delimited by
/* … */
– can also span multiple lines
– do not nest!

Thinking in C ©1998 Fresh Sources 10

Include Files
• The #include directive inserts the

text of a file into the compilation
stream
– occurs before the actual compilation

• Used mostly for function declarations
and defining constants
– no code!

• Standard library components have
headers
– using angle brackets

(#include <stdio.h>)
• You can include any file

– using quotes (#include "mydefs.h")

Thinking in C ©1998 Fresh Sources 11

Standard I/O
• Provides console, file, and memory I/O
• 3 pre-defined I/O streams:

– stdin
• “standard input” (keyboard)

– stdout
• “standard output” (screen)

– stderr
• “standard error” (screen)

• Many functions implicitly use stdin or
stdout

Thinking in C ©1998 Fresh Sources 12

Keyboard Input
/* avg.c: Averages 2 integers */
#include <stdio.h>

int main()
{

/* Declarations must be at beginning: */
int num1, num2;
float sum;

puts("Enter the 1st number:");
scanf("%d",&num1);
puts("Enter the 2nd number:");
scanf("%d",&num2);

sum = num1 + num2;
printf("The average is %f\n", sum/2);
return 0;

}

Thinking in C ©1998 Fresh Sources 13

Sample Output
Enter the 1st number:
10
Enter the 2nd number:
23
The average is 16.500000

The following statement requests 2-decimal format:

printf(“The average is %.2f\n”, sum/2);

The average is 16.50

Thinking in C ©1998 Fresh Sources 14

Summary
Getting Started

• Program source resides in one or
more text files

• Source files can #include one
or more header files

• Source files contain one or more
functions

• Functions contains statements
• 3 pre-defined I/O streams

Thinking in C ©1998 Fresh Sources 15

Exercises
Getting Started

• Compile and run the two programs
in this section in your development
environment.

• Experiment with redirecting the
input/output from/to a text file for
the second program.

Thinking in C ©1998 Fresh Sources 16

2: Fundamental Data Types
• Integers
• Characters

– just small integers

• Floating-point numbers
• Literals and Constants
• Arithmetic

– integer vs. floating-point

• Conversions and Casts

Thinking in C ©1998 Fresh Sources 17

C Types
• Data Objects

– Fundamental (scalar)
• are all numeric

– Compound (composite)
• Section 5

• Functions
– Section 6

• All declarations must specify a
type

Thinking in C ©1998 Fresh Sources 18

Integers
• Come in different sizes:

– not necessarily distinct!
– are signed by default (char special)

• int
– your machine’s word size (at least 16

bits)
• short int

– usually the same as int on 16-bit
platforms

• long int
– at least 32 bits
– usually the same as int on 32-bit

platforms

Thinking in C ©1998 Fresh Sources 19

Characters
• Are really just integers

– character encoding is platform-
specific

– ASCII, EBCDIC, ISO 8859, Unicode
• char

– at least 8 bits (“byte”)
• wchar_t

– “wide character”
– usually the same as
unsigned int (Unicode)

Thinking in C ©1998 Fresh Sources 20

Numeric Limits
• Relevant values for each type

– minimum, maximum, etc.

• Integral limits are in <limits.h>

• Floating-point limits are in
<float.h>

Thinking in C ©1998 Fresh Sources 21

Sample Integral Limits
/* limits.c: Illustrates integral limits */
#include <stdio.h>
#include <limits.h>

int main()
{

printf("char: [%d, %d]\n", CHAR_MIN, CHAR_MAX);
printf("short: [%d, %d]\n", SHRT_MIN, SHRT_MAX);
printf("int: [%d, %d]\n", INT_MIN, INT_MAX);
printf("long: [%ld, %ld]\n", LONG_MIN, LONG_MAX);
return 0;

}

char: [-128, 127]
short: [-32768, 32767]
int: [-2147483648, 2147483647]
long: [-2147483648, 2147483647]

Thinking in C ©1998 Fresh Sources 22

Floating-point Types
• float

– “single precision”
• double

– “double precision”
– the default

• long double
– “extended precision”
– could be same as double

Thinking in C ©1998 Fresh Sources 23

Sample Floating-point Limits
/* float.c: Illustrates floating-pt. limits */
#include <stdio.h>
#include <float.h>

int main()
{

printf("radix: %d\n", FLT_RADIX);
printf("float: %d radix digits\n",

FLT_MANT_DIG);
printf("\t[%g, %g]\n", FLT_MIN, FLT_MAX);
printf("double: %d radix digits\n",

DBL_MANT_DIG);
printf("\t[%g, %g]\n", DBL_MIN, DBL_MAX);
printf("long double: %d radix digits\n",

LDBL_MANT_DIG);
printf("\t[%Lg, %Lg]\n", LDBL_MIN,

LDBL_MAX);
return 0;

}

Thinking in C ©1998 Fresh Sources 24

radix: 2
float: 24 radix digits

[1.17549e-38, 3.40282e+38]
double: 53 radix digits

[2.22507e-308, 1.79769e+308]
long double: 64 radix digits

[3.3621e-4932, 1.18973e+4932]

Thinking in C ©1998 Fresh Sources 25

Non-uniform Distribution
• +/- 0.d1d2…dn x �e, d1 != 0
• Dense near zero
• Sparse away from zero

0 +-

Thinking in C ©1998 Fresh Sources 26

Missing Numbers
/* missing.c */
#include <stdio.h>
#include <limits.h>

main()
{

float x = ULONG_MAX; /* 4,294,967,295 */
double y = ULONG_MAX;
long double z = ULONG_MAX;

printf("%f\n%f\n%Lf\n",x,y,z);
}

4294967296.000000 /* Oops! */
4294967295.000000
4294967295.000000

Thinking in C ©1998 Fresh Sources 27

Literals
• int i = 9, j = 017,
k = 0x7f;

• char c = 'a', c2 = 97;
• long n = 1234567L;
• float x = 1.0F; // or 1.0f
• double y = 2.3;
• long double z = 4.5L; //4.5l
• char string[] = "hello";

Thinking in C ©1998 Fresh Sources 28

Special Character Literals
'\n' newline
'\t' tab
'\0' null byte (ASCII 0)
'\\' backslash (\)
'\b' backspace
'\r' carriage return
'\f' form feed
'\ddd' octal bit pattern
'\xdd' hexadecimal

Thinking in C ©1998 Fresh Sources 29

Constants

• Variables that cannot be modified
• const keyword
• Initialized with a literal:

const int i = 7; /* compile-time */

• Cannot be used as array dimensions
in C
– but can in C++!

Thinking in C ©1998 Fresh Sources 30

Macro Substitution
• Using the #define directive
• Text substitution by the preprocessor
• An alternative for defining constants

– not used much in C++

• Can be used as array dimensions in C
#define SIZE 100
int a[SIZE]; /* "int a[100];" */

Thinking in C ©1998 Fresh Sources 31

Arithmetic
• Integer vs. floating-point
• Integer arithmetic truncates any

fraction in the result:
int i = 2; int j = 3;
int k = i/j; /* k == 0! */

• Floating-point arithmetic suffers
from roundoff error:
– the result may not be in the set of

machine numbers
– how it rounds is platform-specific

Thinking in C ©1998 Fresh Sources 32

Promotions & Conversions
• All integral operations use either
int or long arithmetic

• A numeric operation assumes the
precision of its largest type operand
– smaller operands are temporarily

“widened” (or “promoted”)
automatically

• Beware narrowing conversions:
– if the value is not in the range of the

receiving type, the result is undefined

Thinking in C ©1998 Fresh Sources 33

Casts
• User-defined explicit conversion
• Precede the expression with the

target type in parentheses:
int i = (int)x;

• To force the precision of an
operation, for example:
/* The following keeps the

fraction: */
float x = (float)i / j;

Thinking in C ©1998 Fresh Sources 34

Summary
Fundamental Data Types

• Built-in C data types are numeric
– integer and floating-point

• Integer arithmetic truncates fractions
• Floating-point arithmetic is inexact
• Operands are widened as necessary
• You can force conversions with a cast

Thinking in C ©1998 Fresh Sources 35

Exercise
Fundamental Data Types

• Write a program that reads a real
number (with a nonzero fractional
part) from the keyboard and
rounds it to the nearest integer.
Print out the original number and
the rounded result.

Thinking in C ©1998 Fresh Sources 36

3: Operators
• Mathematical
• Relational
• Logical
• Bitwise
• Assignment
• Operator Associativity and

Precedence

Thinking in C ©1998 Fresh Sources 37

Operator Cardinality
• All operators are either unary or

binary
• Exception:

– the “conditional” operator is ternary:
max = x > y ? x : y;

Thinking in C ©1998 Fresh Sources 38

Mathematical Operators
• Additive: +, -, ++, --

i = j++; /* i = j; j = j + 1; */
i = ++j; /* j = j + 1; i = j; */

• Multiplicative: *, /, %
i = 10 % 3; /* = 1 */

Thinking in C ©1998 Fresh Sources 39

Relational Operators
• Equality: ==

if (i == j) …;
not

if (i = j) …; /* error! */

• Inequality: !=
• Greater-than: >, >=

• Less-than: <, <=

Thinking in C ©1998 Fresh Sources 40

Boolean Expressions
• Truth values
• There is no Boolean type in C

– but Java and C++ have them

• Zero is false
• Non-zero is true

Thinking in C ©1998 Fresh Sources 41

Logical Operators

• AND: &&
if (i < n && a[i] == 99) …

• OR: ||
if (i == 2 || i == 3) …

• NOT: !
if (!(i == 2 || i == 3)) …

Thinking in C ©1998 Fresh Sources 42

Bitwise Operators
• AND: &
• OR: |
• XOR: ^
• 1’s Complement: ~
• Shift left: <<
• Shift right: >>

Thinking in C ©1998 Fresh Sources 43

Bitwise Example

/* bitwise.c: Illustrates bitwise ops */
#include <stdio.h>

int main()
{

short int n = 0x00a4; /* 00000000 10100100 */
short int m = 0x00b7; /* 00000000 10110111 */

printf("n & m == %04x\n", n & m);
printf("n | m == %04x\n", n | m);
printf("n ^ m == %04x\n", n ^ m);
printf("~n == %04x\n", ~n);
printf("n << 3 == %04x\n", n << 3);
printf("n >> 3 == %04x\n", n >> 3);
return 0;

}

Thinking in C ©1998 Fresh Sources 44

n & m == 00a4 (0000000010100100)
n | m == 00b7 (0000000010110111)
n ^ m == 0013 (0000000000010011)
~n == ffffff5b … (1111111101011011)
n << 3 == 0520 (0000010100100000)
n >> 3 == 0014 (0000000000010100)

The following format drops the high-byte of ~n:

printf("~n == %04hx\n", ~n);

~n == ff5b

Output

Thinking in C ©1998 Fresh Sources 45

Assignment Operators

• Assignment can be combined with
other binary operators:
+=, -=, *=, /=, %=, >>=,
<<=, &=, ^=, !=

i += 5; /* same as i = i + 5; */

Thinking in C ©1998 Fresh Sources 46

Operator Associativity
• Governs the order in which

adjacent operations execute
• Right-to-left:

– unary and assignment operators
i = j = k same as i = (j = k)

• Left-to-right:
– everything else
i + j + k same as (i + j) + k

Thinking in C ©1998 Fresh Sources 47

Operator Precedence
• Follows Mathematical Intuition

(mostly)
– unary, then multiplicative, then additive

• Unary operators are high priority
• Assignment is last (almost -- except

for the comma operator)
• Beware bitwise operators!

– When in doubt, use parentheses
• Any C book should have a precedence

table

Thinking in C ©1998 Fresh Sources 48

Summary
Operators

• The modulus op (%) gives the
remainder from integer division

• The equality op has 2 equal signs (=
=)

• In boolean contexts, 0 is false, non-
zero true

• Unary and assignment ops group
right-to-left, all others left-to-right

• Beware the precedence of bitwise
ops

Thinking in C ©1998 Fresh Sources 49

Exercise
Operators

• Write a program that reads three
integers from the keyboard and
prints out the sum of all the even
numbers and the sum of all the
odds. For example, if the numbers
are 1, 2, and 3, the output is:
Sum of evens: 2
Sum of odds: 4

Thinking in C ©1998 Fresh Sources 50

4: Controlling Program Flow
• Structured Programming
• Decision-making
• Repetition
• Branching

Thinking in C ©1998 Fresh Sources 51

Structured Programming
• In theory, all processes can be

expressed via three constructs:
– sequences of statements
– selection (aka alternation)
– repetition
– along with an arbitrary number of

boolean flags

• Most languages add some sort of
direct branching capability as well
(e.g., goto)

Thinking in C ©1998 Fresh Sources 52

Decision Making
• “Selection”
• if-then-else
• case statement

– special case of if-then-else
– selects from a set of integers

Thinking in C ©1998 Fresh Sources 53

The if Statement
if (<boolean expression>)

<statement-1>;
else

<statement-2>;

• Enclose compound statements
in {braces}

Thinking in C ©1998 Fresh Sources 54

/* age.c: Comments on your age */
#include <stdio.h>

int main()
{

int age;
puts("Enter your age:");
scanf("%d", &age);
if (age < 20) /* no semi-colon here! */

puts("youth");
else if (age < 40)

puts("prime");
else if (age < 60)

puts("aches and pains");
else if (age < 80)

puts("golden");
else
{

char really;
printf("Are you really %d?\n", age);
scanf(" %c", &really); /* note space! */
if (really == 'Y' || really == 'y')

puts("Congratulations!");
else

puts("I didn't think so!");
}
return 0;

}

Thinking in C ©1998 Fresh Sources 55

The switch Statement
• Selects from a set of integral values
• Each case can be delimited by a
break;
– otherwise you fall through to the next

case
• Don’t define variables inside a
switch

• The optional default case
executes if none are selected.

Thinking in C ©1998 Fresh Sources 56

/* age2.c: Uses a switch */
#include <stdio.h>

int main()
{

int age;
char really; /* note position! */
puts("Enter your age:");
scanf("%d", &age);
switch(age/20)
{
case 0:

puts("youth");
break;

case 1:
puts("prime");
break;

case 2:
puts("aches and pains");
break;

case 3:
puts("golden");
break;

default:
printf("Are you really %d?\n", age);
scanf(" %c", &really);
if (really == 'Y' || really == 'y')

puts("Congratulations!");
else

puts("I didn't think so!");
}
return 0;

}

Thinking in C ©1998 Fresh Sources 57

Repetition
• 3 types of loops:

– while (<cond>) <statement>
– do <statement> while
(<cond>);

– for (<init>; <cond>;
<iterate>) <statement>

Thinking in C ©1998 Fresh Sources 58

while Loop

/* Count from 1 to n */
i = 1;
while (i <= n)
{

printf("%d ", i);
i += 1;

}

/* A shorter version */
i = 1;
while (i <= n)

printf("%d ", i++);

Thinking in C ©1998 Fresh Sources 59

do-while Loop

/* Count from 1 to n */
i = 1;
do

printf("%d ", i++);
while (i <= n);

Thinking in C ©1998 Fresh Sources 60

for Loop

/* Count from 1 to n */
for (i = 1; i <= n; i++)

printf("%d ", i);

Thinking in C ©1998 Fresh Sources 61

Branching
• break

– exits the innermost enclosing loop or
switch

• continue
– cycles a loop (i.e., jumps to test)

• goto
– jumps to a label
– useful for exiting nested loops &

switches
– not covered!

Thinking in C ©1998 Fresh Sources 62

/* branch.c: Illustrates branching */
/* Finds an odd number whose digits

add to 7. Assumes 2 digits only. */

#include <stdio.h>
#define SIZE 5

int main()
{

int nums[SIZE] = {10,21,32,43,54};
int i;
for (i = 0; i < SIZE; ++i)
{

int dig1, dig2;
if (nums[i]%2 == 0)

continue; /* skip evens */
dig2 = nums[i]%10;
dig1 = nums[i]/10%10;
if (dig1 + dig2 == 7)
{

printf("found %d\n", nums[i]); /* 43 */
break;

}
}
return 0;

}

Thinking in C ©1998 Fresh Sources 63

Summary
Controlling Program Flow

• All algorithms can be expressed
with simple statements, decisions,
and loops
– plus some flags, maybe

• Use branching sparingly
• Most loops are while or for

loops
– you usually test first

Thinking in C ©1998 Fresh Sources 64

Exercise
Controlling Program Flow

• Rewrite the odd/even number
program from the previous section
to process an arbitrary number of
input integers. Keep reading until
the user enters a 0. Use a switch
statement to determine the
number’s parity.

Thinking in C ©1998 Fresh Sources 65

5: Compound Data Types
• Arrays
• Strings
• Structures

Thinking in C ©1998 Fresh Sources 66

Arrays
• The quintessential data structure!
• Homogeneous, fixed-length

sequences
– of any type whatsoever

• Random access via the indexing
operator ([])

• Indexing starts at 0
– ends at n-1

Thinking in C ©1998 Fresh Sources 67

/* reverse.c: Prints an input sequence backwards */
#include <stdio.h>
#define SIZE 20

int main()
{

int i, n;
int nums[SIZE];

/* Read numbers into array.
Stop when 0 is found */

for (n = 0; n < SIZE; ++n)
{

int input;
scanf("%d", &input);
if (input == 0)

break;
nums[n] = input;

}

for (i = n-1; i >= 0; --i)
printf("%d ", nums[i]);

return 0;
}

Thinking in C ©1998 Fresh Sources 68

Array Initialization
• Can use an initializer list:

int a[] = {10,20,30,40,50};

• The dimension is optional
– if provided, it must be >= the number

of initializers
• those remaining are zero-initialized

– if omitted, it is the same as if you
entered the number of initializers for
the dimension

– for multi-dimensional arrays, must
specify all but first dimension

Thinking in C ©1998 Fresh Sources 69

Multi-dimensional Arrays
• Don’t really exist in C!
• C, C++, and Java allow “arrays of

arrays”
– easier to visualize than hyper-tables

• You use one set of brackets for
each dimension

• Can initialize with nested initializer
lists

Thinking in C ©1998 Fresh Sources 70

Example
2-dimensional Array

• Consider the following 3 x 2 array:
1 2
3 4
5 6

• C stores this linearly: 1 2 3 4 5 6
• The compiler interprets it as an

array of 3 “arrays of 2 ints”

Thinking in C ©1998 Fresh Sources 71

Example
continued
/* 2d.c: Illustrates a 2-d array */
#include <stdio.h>

int main()
{

int a[][2] = {{1,2}, {3,4}, {5,6}};
int i, j;

for (i = 0; i < 3; ++i)
{

for (j = 0; j < 2; ++j)
printf("%d ", a[i][j]);

putchar('\n');
}
return 0;

}

1 2
3 4
5 6

Thinking in C ©1998 Fresh Sources 72

3d Array Example
• The program on the next slide

initializes and traverses the
following 3d array:

1 2
3 4 == a[0]
5 6

7 8
9 0 == a[1]
1 2

Thinking in C ©1998 Fresh Sources 73

/* 3d.c: Illustrates a 3-d array */
#include <stdio.h>

int main()
{

int a[][3][2] = {{{1,2}, {3,4}, {5,6}},
{{7,8}, {9,0}, {1,2}}};

int i, j, k;

for (i = 0; i < 2; ++i)
{

for (j = 0; j < 3; ++j)
{

for (k = 0; k < 2; ++k)
printf("%d ", a[i][j][k]);

putchar('\n');
}
putchar('\n');

}
return 0;

}

Thinking in C ©1998 Fresh Sources 74

Strings
• Arrays of characters
• End with a null byte ('\0') by

convention
• C++ and Java have better string

capabilities
• String literals implicitly provide

the null terminator:
"hello" becomes:

'h' 'e' 'l' 'l' 'o' '\0'

Thinking in C ©1998 Fresh Sources 75

String Example
/* strings.c: Illustrates C strings */
#include <stdio.h>
#include <string.h>

int main()
{

char last[] = {'f','r','o','s','t','\0'};
char first[] = "robert";
printf("last == %s\n", last);
printf("first == %s\n", first);
printf("last has %d chars\n", strlen(last));
printf("first has %d chars\n", strlen(first));
return 0;

}

last == frost
first == robert
last has 5 chars
first has 6 chars

Thinking in C ©1998 Fresh Sources 76

<string.h>
• Contains a number of text

processing functions
• Most assume null-terminated char-

arrays
• strcpy, strcat, memcpy
• strcmp, memcmp
• strchr, memchr, strrchr,
strstr, strtok

Thinking in C ©1998 Fresh Sources 77

In-core Formatting
/* incore.c: Illustrates sprintf/sscanf */
#include <stdio.h>

int main()
{

int n = 1;
float x = 2.0;
char s[] = "hello";
char string[BUFSIZ];

sprintf(string, "%d %f j%s", n+1, x+2, s+1);
puts(string);
sscanf(string, "%d %f %s", &n, &x, s);
printf("n == %d, x == %f, s == %s\n", n, x, s);
return 0;

}

2 4.000000 jello
n == 2, x == 4.000000, s == jello

Thinking in C ©1998 Fresh Sources 78

Structures
• Data record
• Uses the struct keyword
• Ordered Collection of arbitrary

variables
– “members”

• Access members via the ‘.’
operator

• The key to objects and data
abstraction!
– data members are object attributes

Thinking in C ©1998 Fresh Sources 79

Structure Example
/* struct.c: Illustrates structures */
#include <stdio.h>
#include <string.h>

struct Hitter
{

char last[16]; /* 15 + 1 */
char first[11]; /* 10 + 1 */
int home_runs;

}; /* Don’t forget ';' !!! */

int main()
{

struct Hitter h1 = {"McGwire", "Mark", 70};
struct Hitter h2;
strcpy(h2.last, "Sosa");
strcpy(h2.first, "Sammy");
h2.home_runs = h1.home_runs - 4;

Thinking in C ©1998 Fresh Sources 80

printf("#1 == {%s, %s, %d}\n",
h1.last, h1.first, h1.home_runs);

printf("#2 == {%s, %s, %d}\n",
h2.last, h2.first, h2.home_runs);

return 0;
}

#1 == {McGwire, Mark, 70}
#2 == {Sosa, Sammy, 66}

Thinking in C ©1998 Fresh Sources 81

Another Structure Example

• “Hall of Fame” struct

• struct members can be any type
• Shows a struct within a struct

Thinking in C ©1998 Fresh Sources 82

/* struct2.c: Illustrates nested structures */
#include <stdio.h>
#include <string.h>

struct Hitter
{

char last[16];
char first[11];
int home_runs;
int year; /* new member */

};

struct HallOfFame
{

struct Hitter players[10];
int nPlayers;

};

Thinking in C ©1998 Fresh Sources 83

int main()
{

struct HallOfFame hr;
int i;
hr.nPlayers = 0;

/* Insert first player */
strcpy(hr.players[hr.nPlayers].last, "Ruth");
strcpy(hr.players[hr.nPlayers].first, "Babe");
hr.players[hr.nPlayers].home_runs = 60;
hr.players[hr.nPlayers++].year = 1927;

/* Insert next player */
strcpy(hr.players[hr.nPlayers].last, "Maris");
strcpy(hr.players[hr.nPlayers].first, "Roger");
hr.players[hr.nPlayers].home_runs = 61;
hr.players[hr.nPlayers++].year = 1961;

Thinking in C ©1998 Fresh Sources 84

/* Print players in hr: */
for (i = 0; i < hr.nPlayers; ++i)

printf("%d: {%s, %s, %d}\n",
hr.players[i].year,
hr.players[i].last,
hr.players[i].first,
hr.players[i].home_runs);

return 0;
}

1927: {Ruth, Babe, 60}
1961: {Maris, Roger, 61}

Thinking in C ©1998 Fresh Sources 85

Summary
Compound Data Types

• Arrays start indexing at 0
• Multi-dim. arrays are “arrays of

arrays”
• Strings are arrays of char

– delimited by a null byte

• Structure are collections of data
members

• Arrays and structures support
brace-delimited initializer lists

Thinking in C ©1998 Fresh Sources 86

Exercise
Compound Data Types

• Define an Employee structure that
has members last name, first
name, title, and salary.

• Write a program that prompts the
user for an arbitrary number of
Employees, and stores them in an
array of Employee. When the user
enters an empty string for the last
name, print out the list of
Employees.

Thinking in C ©1998 Fresh Sources 87

6: Programming with Functions

• Procedural Programming
• Value Semantics
• Function Prototypes
• Scope
• Automatic, static, and global

variables

Thinking in C ©1998 Fresh Sources 88

Procedural Programming

• Uses the procedure (or function) as the
basic unit of program architecture
– a program is just a collection of functions
– a 1950’s technology

• Functional Decomposition
– partitions a system into its key processes
– a 1970’s technology
– precursor to object-oriented programming

Thinking in C ©1998 Fresh Sources 89

Functions in C
• A Collection of Statements

– defined at file scope
– each has a unique name
– enclosed in {braces}
– performs some well-defined

operation
– may take arguments
– may return a value

Thinking in C ©1998 Fresh Sources 90

/* fun1.c: Illustrates a C function */
#include <stdio.h>

float avg(int n, int m)
{

return (n + m) / 2.0;
}

int main()
{

int x, y;

puts("Enter the first number:");
scanf("%d", &x);
puts("Enter the second number:");
scanf("%d", &y);
printf("The average is %.2f\n", avg(x,y));
return 0;

}

Enter the 1st number:
11
Enter the 2nd number:
12
The average is 11.50

Thinking in C ©1998 Fresh Sources 91

Value Semantics
• Arguments are passed by value

– each formal parameter gets a copy of
its argument’s value

– the calling argument is not affected

• The result is returned by value
– the calling expression gets a

temporary:
a = b + avg(c,d);

Thinking in C ©1998 Fresh Sources 92

The void keyword
• Used to indicate the absence of a

return value
– i.e., the function is a procedure:

void f(int x, float y) {…}

• Or to disallow arguments:
void title(void){

printf("Welcome to …");
}
…
title();

Thinking in C ©1998 Fresh Sources 93

/* fun2.c: Shows return with void */
/* Also illustrates an array parameter */
#include <stdio.h>

void print_ints(int nums[], int n)
{

int i;
if (n <= 0)

return;
for (i = 0; i < n; ++i)
{

if (i > 0)
putchar(',');

printf("%d", nums[i]);
}

}

int main()
{

int a[] = {9,0,2,1,0};
print_ints(a, 5);
return 0;

}

9,0,2,1,0

Thinking in C ©1998 Fresh Sources 94

Using Functions
• The number and types of the calling

arguments should match a function’s
formal parameters

• The compiler can detect usage errors at
compile time

• Guideline: either define or declare a
function before its first use
– required in C++ and Java

Thinking in C ©1998 Fresh Sources 95

Function Prototypes
• A function declaration

– signature (name + parameter types)
– return type

• Lets you define a function in a
separate file from where it’s called
– the basis for reusable libraries

Thinking in C ©1998 Fresh Sources 96

/* fun3.c: Illustrates a function prototype */
#include <stdio.h>

float avg(int, int); /* Prototype */

int main()
{

int x, y;

puts("Enter the first number:");
scanf("%d", &x);
puts("Enter the second number:");
scanf("%d", &y);
printf("The average is %.2f\n", avg(x,y));
return 0;

}

float avg(int n, int m)
{

return (n + m) / 2.0;
}

Thinking in C ©1998 Fresh Sources 97

Function Libraries
• Prototypes in header files
• Implementation in object code files
• A poor man’s module mechanism

– import declarations with #include
– linker binds the needed code

• That’s how the standard C library
works!

• C++ uses “namespaces”
• Java uses “packages”

Thinking in C ©1998 Fresh Sources 98

/* file mystuff.h */
float avg(int, int);
…
•

/* file mystuff.c */
float avg(int n, int m)
{

return (n + m) / 2.0;
}
…
•

/* file fun3.c */
#include <stdio.h>
#include "mystuff.h"

int main()
{

…
… avg(x, y) …
…
return 0;

}

Thinking in C ©1998 Fresh Sources 99

Scope
• Where an identifier is visible
• Three basic types:

– local (or “block”) scope
– file scope
– program scope
– (there are others, but they’re beyond

the “scope” of this course:-)

Thinking in C ©1998 Fresh Sources 100

Local Scope
• Within a block (i.e., a set of

{braces})
– functions
– loops and if-statements

• Visible from the point of
declaration until the end of the
block

Thinking in C ©1998 Fresh Sources 101

File Scope
• The region outside of any function
• Visible from declaration to end of

file

Thinking in C ©1998 Fresh Sources 102

/* scope.c */
#include <stdio.h>

int i = 3; /* A "global" variable */

int main()
{

int j;
printf("%d\n",i);
for (j = 0; j < i; ++j)
{

int i = 99;
printf("%d\n",i);
/* New block follows: */
{

int i = j;
printf("%d\n",i);

}
}
return 0;

}

3
99
0
99
1
99
2

Thinking in C ©1998 Fresh Sources 103

Automatic Variables
• Allocated on the program stack
• Any variable defined in a block

– without the static keyword

• Reinitialized each time execution
enters its block

Thinking in C ©1998 Fresh Sources 104

Example
Automatic Storage

int min(int nums[], int size) /* auto variables */
{

int i, small = nums[0]; /* auto variables */
for (i = 1; i < size; ++i)

if (nums[i] < small)
small = nums[i];

return small;
}

Thinking in C ©1998 Fresh Sources 105

Static Variables
• Reside in a special data area

– (static) data segment

• Any variable defined outside a
block
– “file scope”

• Any variable declared inside a
block with the static keyword

• Initialized only once
– at program startup

Thinking in C ©1998 Fresh Sources 106

Example
Static Storage

/* static.c */
#include <stdio.h>

int count()
{

static int n = 0;
return ++n;

}

int main()
{

int i;
for (i = 0; i < 5; ++i)

printf("%d ", count());
return 0;

}

1 2 3 4 5

Thinking in C ©1998 Fresh Sources 107

Global Variables
• Have “program scope”
• Accessible outside their source file
• Defined at file scope

– without the static keyword

• Use the extern keyword to
refer to global variables in other
files

• Static + file scope = private to its
file

Thinking in C ©1998 Fresh Sources 108

/* file1.c */

int i = 10; /* global */
static int j = 20; /* private */

int get_j(void)
{

return j;
}

/* file2.c */
#include <stdio.h>

int main()
{

extern int i;
/* extern optional for functions: */
int get_j(void);

printf("i == %d\n", ++i); /* i == 11 */
printf("j == %d\n", get_j()); /* j == 20 */
return 0;

}

Thinking in C ©1998 Fresh Sources 109

Information Hiding
• Using file statics in C
• Protects data
• Separates interface from

implementation
• Fundamental principle of object-

oriented programming
• C++ and Java support it much

better

Thinking in C ©1998 Fresh Sources 110

Stack Example
• stack.h

– user function declarations

• stack.c
– function implementation
– private definitions

• tstack.c
– a test program

Thinking in C ©1998 Fresh Sources 111

/* stack.h: Declarations for a stack of ints */

#define STK_ERROR -32767

void stk_push(int);
int stk_pop(void);
int stk_top(void);
int stk_size(void);
int stk_error(void);

Thinking in C ©1998 Fresh Sources 112

/* stack.c: implementation */
#include "stack.h"

/* Private data: */
#define MAX 10 /* stack limit */
static int error = 0; /* error flag */
static int data[MAX]; /* the stack */
static int ptr = 0; /* stack pointer */

/* Function implementation */
void stk_push(int x)
{

if (ptr < MAX)
{

data[ptr++] = x;
error = 0;

}
else

error = 1;
}

Thinking in C ©1998 Fresh Sources 113

int stk_pop(void)
{

if (ptr > 0)
{

int x = data[--ptr];
error = 0;
return x;

}
else
{

error = 1;
return STK_ERROR;

}
}

int stk_size(void)
{

return ptr;
}

Thinking in C ©1998 Fresh Sources 114

int stk_top(void)
{

if (ptr > 0)
{

error = 0;
return data[ptr-1];

}
else
{

error = 1;
return STK_ERROR;

}
}

int stk_error(void)
{

return error;
}

Thinking in C ©1998 Fresh Sources 115

/* tstack.c: Tests the stack of ints */
#include "stack.h"
#include <stdio.h>

int main()
{

int i;

/* Populate stack */
for (i = 0; i < 11; ++i)

stk_push(i);
if (stk_error())

puts("stack error");
printf("The last element pushed was %d\n",

stk_top());

/* Pop/print stack */
while (stk_size() > 0)

printf("%d ", stk_pop());
putchar('\n');
if (!stk_error())

puts("no stack error");
return 0;

}

Thinking in C ©1998 Fresh Sources 116

stack error
The last element pushed was 9
9 8 7 6 5 4 3 2 1 0
no stack error

Thinking in C ©1998 Fresh Sources 117

Summary
Programming with Functions

• A function is a named collection of
statements
– may take arguments
– may return a value

• C functions use value semantics
• Scope is a variable’s visible region

– local, file, program

• You hide variables with file statics

Thinking in C ©1998 Fresh Sources 118

Exercise
Programming with Functions

• In this exercise you will split the Employee
exercise from the last section into 3 files:
employee.h, employee.c, lab6.c (similar to
the stack example). Employee.h declares 3
functions (see the next slide). You need to
provide employee.c, which will contain the
Employee structure definition and any
needed private data, and the
implementation of the functions declared in
employee.h. Use the lab6.c provided on the
subsequent slide.

Thinking in C ©1998 Fresh Sources 119

Exercise
employee.h

/* employee.h */

/* addEmployee reads each field from standard
* input into the next available Employee slot,
* as in the exercise in the previous section.
* It returns the index of the Employee
* just added, or -1 if the array is full */

int addEmployee(void);

/* printEmployee also returns the index of the
* Employee just printed, or -1 if the index i
* is invalid */

int printEmployee(int i);

/* Does what it says: */
int numEmployees(void);

Thinking in C ©1998 Fresh Sources 120

Exercise
lab6.c
/* lab6.c */
#include "employee.h”
#include <stdio.h>

int main() {
int i;

/* Fill Employee array: */
while (addEmployee() != -1)

;

/* Print each Employee: */
for (i = 0; i < numEmployees(); ++i) {

printEmployee(i);
putchar('\n');

}
return 0;

}

Thinking in C ©1998 Fresh Sources 121

7: Pointers 101
• Indirection
• Simulating Call-by-reference
• Command-line Arguments
• Heap variables

Thinking in C ©1998 Fresh Sources 122

• A pointer, like an integer, holds a number
– interpreted as the address of another object

• Must be declared with its associated type:
– e.g., “pointer to integer”, “pointer to

character”, etc.

• Useful for:
– dynamic objects (allocated from the heap)
– for direct machine access (such as mapped

memory)

Pointers

Thinking in C ©1998 Fresh Sources 123

• Accessing an object through a pointer is
called indirection

• The “address-of” operator (&)obtains
an object’s address

• The “de-referencing” operator (*) refers
to the object pointed at

Pointer Indirection

Thinking in C ©1998 Fresh Sources 124

/* indirect.c: Illustrate indirection */
#include <stdio.h>

int main()
{

int i = 7;
int* ip = &i;

printf("Address %p contains %d\n", ip, *ip);
*ip = 8;
printf("Now address %p contains %d\n", ip, *ip);
return 0;

}

Address 0012FF88 contains 7
Now address 0012FF88 contains 8

Indirection Example

Thinking in C ©1998 Fresh Sources 125

Pointer Diagram

0012FF88 8

ip i (@0012FF88)

Thinking in C ©1998 Fresh Sources 126

Reference Semantics
• Where a formal parameter is just

an alias for the calling argument
– changing the parameter changes the

original argument

• Not supported directly in C
– nor in Java
– but C++ supports it

• In C we fake it with pointers

Thinking in C ©1998 Fresh Sources 127

Simulating Reference
Semantics
/* swap.c */
#include <stdio.h>

void swap(int* x, int* y)
{

int temp = *x;
*x = *y;
*y = temp;

}

int main()
{

int i = 1, j = 2;
swap(&i, &j);
printf("i == %d, j == %d\n", i, j);
return 0;

}

i == 2, j == 1

Thinking in C ©1998 Fresh Sources 128

Ragged Arrays

Thinking in C ©1998 Fresh Sources 129

Command-line Arguments

• Optional arguments to main
int main(int argc, char* argv[]) {

…
}

• argv is a ragged array

Thinking in C ©1998 Fresh Sources 130

Example
Command-line Arguments

/* echo.c: Echoes command-line args */
#include <stdio.h>

int main(int argc, char* argv[])
{

int i;
for (i = 0; i < argc; ++i)

puts(argv[i]);
return 0;

}

D:\TIC> .\echo hello there
D:\TIC\echo.exe
hello
there

Thinking in C ©1998 Fresh Sources 131

The NULL Pointer
• A special value

– the address 0

• Doesn’t point anywhere
• Can use to compare to other

pointers
– e.g., as a sentinel
– returned by selected library

functions

• Cannot de-reference NULL

Thinking in C ©1998 Fresh Sources 132

• Accessed indirectly through a pointer
– returned by malloc()

• Reside in a unique data area
– often called the “heap” or “dynamic storage”

• You give the memory back when done
– via free()

• Useful when you don’t know everything
ahead of time
– like how big an array needs to be

Heap Variables

C Heap Functions
• Defined in <stdlib.h>:

void* malloc(size_t size);
void free(void *ptr);
void* calloc(size_t nelems,

size_t elem_size);
void* realloc(void *ptr, size_t size);

Thinking in C ©1998 Fresh Sources 134

/* reverse2.c: Prints lines in reverse
* order from input
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define MAXWIDTH 81
#define MAXLINES 100

int main()
{

char* lines[MAXLINES];
char line[MAXWIDTH];
int i, n;

/* Store in a ragged array */
for(n = 0;

n < MAXLINES && gets(line) != NULL; ++n)
{

if ((lines[n] = malloc(strlen(line)+1))
== NULL)

exit(1);
strcpy(lines[n], line);

}

Thinking in C ©1998 Fresh Sources 135

/* Print in reverse order */
for (i = 0; i < n; ++i)
{

puts(lines[n-i-1]);
free(lines[n-i-1]);

}
return 0;

}

Thinking in C ©1998 Fresh Sources 136

The sizeof operator
• Gives the size of a variable or type in

bytes
• A compile-time operator
• Array size idiom:

int n = sizeof a / sizeof a[0];

• Must use parentheses with types:
float* p =
malloc(sizeof(float));

Thinking in C ©1998 Fresh Sources 137

structs on the Heap
• Use sizeof, as usual:

struct Employee* p =
malloc(sizeof(struct Employee));

• Accessing members uses a messy syntax:
(*p).age = 47;

• Alternate syntax (the -> operator):
p->age = 47;

Thinking in C ©1998 Fresh Sources 138

structs as Arguments

• You usually pass a struct’s address
– into a pointer parameter, of course
– saves time and space

• Equivalent to Java semantics
– Java never passes objects by value
– passes a pointer instead
– but it’s all invisible to you

Thinking in C ©1998 Fresh Sources 139

/* structarg.c: Passes a struct by address */
#include <stdio.h>

struct Date
{

int year;
int month;
int day;

};

void printDate(struct Date* p)
{

printf("%2d/%2d/%02d", p->month, p->day,
p->year);

}

int main()
{

struct Date d = {98, 10, 2};
printDate(&d);
return 0;

}

10/ 2/98

Thinking in C ©1998 Fresh Sources 140

Arrays as Arguments
• Inefficient to pass entire array
• A pointer to the first element is

passed
• char* and char[] mean the

same as a function parameter
• More on this for C++ programmers

in Section 8b.

Thinking in C ©1998 Fresh Sources 141

Exercise
Pointers

• As in the previous section, a header file
(employ2.h) and a test file (lab7.c) follow
this slide. The test program creates
Employee objects and exercises the various
functions declared in employ2.h. Provide
the implementation for these functions in a
file named employ2.c. The function
createEmployee(…) allocates an Employee
struct on the heap and initializes it with its
arguments, and returns the pointer returned
from malloc().

Thinking in C ©1998 Fresh Sources 142

Exercise
employ2.h
/* employ2.h */
#ifndef EMPLOYEE_H
#define EMPLOYEE_H

struct Employee
{

char last[16];
char first[11];
char title[16];
int salary;

};

struct Employee*
createEmployee(char*,char*,char*,int);

char* getLast(struct Employee*);
char* getFirst(struct Employee*);
char* getTitle(struct Employee*);
int getSalary(struct Employee*);
void setLast(struct Employee*, char*);
void setFirst(struct Employee*, char*);
void setTitle(struct Employee*, char*);
void setSalary(struct Employee*, int);
void printEmployee(struct Employee*);

#endif

Thinking in C ©1998 Fresh Sources 143

Exercise
lab7.c

/* lab7.c */
#include "employ2.h"
#include <stdio.h>
#include <stdlib.h>

#define MAXEMPS 5

int main()
{

struct Employee* emps[MAXEMPS];
struct Employee* p;
int i, nemps = 0;

emps[nemps++] = createEmployee("Mantle", "Mickey",
"Outfielder", 58);

emps[nemps++] = createEmployee("Maris", "Roger",
"Shortstop", 60);

if (emps[nemps-1]->salary != 61)
emps[nemps-1]->salary = 61;

Thinking in C ©1998 Fresh Sources 144

p = createEmployee("", "", "", 0);
setLast(p, "Kaline");
setFirst(p, "Al");
setTitle(p, "Outfielder");
setSalary(p, 52);
emps[nemps++] = p;

for (i = 0; i < nemps; ++i)
{

printEmployee(emps[i]);
putchar('\n');
free(emps[i]);

}
return 0;

}

{Mantle,Mickey,Outfielder,58}
{Maris,Roger,Shortstop,61}
{Kaline,Al,Outfielder,52}

Thinking in C ©1998 Fresh Sources 145

8: Pointers 102
• Odds and ends
• Pointers to Pointers
• Pointer Arithmetic
• Pointers and Arrays
• Pointers and const
• Generic Pointers (void*)
• Pointers to functions
• Incomplete Types

Thinking in C ©1998 Fresh Sources 146

Odds and Ends
• Unsigned integers
• typedef

Thinking in C ©1998 Fresh Sources 147

Unsigned Integers
• Each integral type has an unsigned

version
– unsigned keyword

• Holds only non-negative numbers
• Uses sign bit in mantissa

– max is twice as large as signed version
– min is zero

• Often used as array indices or to hold
sizes
– size_t

Thinking in C ©1998 Fresh Sources 148

/* ulimits.c: Illustrates unsigned limits */
#include <stdio.h>
#include <limits.h>

int main()
{

printf("char: [0, %u]\n", UCHAR_MAX);
printf("short: [0, %u]\n", USHRT_MAX);
printf("int: [0, %u]\n", UINT_MAX);
printf("long: [0, %lu]\n", ULONG_MAX);
return 0;

}

char: [0, 255]
short: [0, 65535]
int: [0, 4294967295]
long: [0, 4294967295]

Thinking in C ©1998 Fresh Sources 149

Sign Extension
/* bitwise2.c: Illustrates sign extension */
#include <stdio.h>

int main()
{

unsigned int n = 0x00a4; /* 000... 10100100 */
int m = 0x00b7; /* 000... 10110111 */

printf("~n == %08x\n", ~n);
printf("~m == %08x\n", ~m);
printf("(~n) >> 4 == %08x\n", (~n) >> 4);
printf("(~m) >> 4 == %08x\n", (~m) >> 4);
return 0;

}

~n == ffffff5b
~m == ffffff48
(~n) >> 4 == 0ffffff5
(~m) >> 4 == fffffff4

Thinking in C ©1998 Fresh Sources 150

typedef

• “Type definition” facility
• Defines synonyms for other types

– an abstraction mechanism:
typedef unsigned int size_t;

– a shorthand
• e.g., eliminates proliferation of struct
• implicit in C++

Thinking in C ©1998 Fresh Sources 151

Structure Tag typedef Idiom

struct Foo
{

int x;
int y;

};

typedef struct Foo Foo;

Foo f; /* struct not needed */

Thinking in C ©1998 Fresh Sources 152

Pointers to Pointers
• A pointer can point to any type
• Including another pointer type
• Can nest to 12 levels of indirection

– 2 is the practical limit
– less common in C++

Thinking in C ©1998 Fresh Sources 153

/* pptr.c: Illustrates pointers to pointers */
#include <stdio.h>

int main()
{

int i = 7, *ip = &i, **ipp = &ip;
printf("Address %p contains %d\n", ip, *ip);
printf("Address %p contains %p\n", ipp, *ipp);
printf("**ipp == %d\n", **ipp);
return 0;

}

Address 0012FF88 contains 7
Address 0012FF84 contains 0012FF88
**ipp == 7

Thinking in C ©1998 Fresh Sources 154

• You can add/subtract an integer
to/from a pointer

• The pointer advances/retreats
that number of elements
– not bytes

• Subtracting two pointers yields
the number of elements between
them

Pointer Arithmetic

Thinking in C ©1998 Fresh Sources 155

/* parith.c: Illustrates pointer arithmetic */
#include <stdio.h>
#include <stddef.h> /* for ptrdiff_t */

int main()
{

float a[] = {1.0, 2.0, 3.0}, *p = &a[0];
ptrdiff_t diff;

printf("sizeof(float) == %u\n",sizeof(float));
printf("p == %p, *p == %f\n", p, *p);
p += 2;
printf("p == %p, *p == %f\n", p, *p);

sizeof(float) == 4
p == 0012FF80, *p == 1
p == 0012FF88, *p == 3

Pointer Arithmetic Example

Thinking in C ©1998 Fresh Sources 156

diff = p - a; /* a == &a[0] */
printf("diff == %ld\n", diff);
diff = (char*)p - (char*)a;
printf("diff == %ld\n", diff);
return 0;

}

diff == 2
diff == 8

• The name of an array becomes a
pointer to its 1st element in most
expressions

• In other words: a is the same as
&a[0]

• Or, in other words: *a == a[0]
• More generally: a + i == &a[i]
• Or: *(a + i) == a[i]
• You can even say i[a]!

– but don’t!

Pointers and Arrays

Thinking in C ©1998 Fresh Sources 158

Pointer and Arrays Example
/* parray.c */
#include <stdio.h>

int min(int* nums, int size) /* or int nums[] */
{

int* end = nums + size; /* past the end */
int small = *nums;
while (++nums < end)

if (*nums < small)
small = *nums;

return small;
}

main()
{

int a[] = {56,34,89,12,9};
printf("%d\n", min(a, 5)); /* 9 */

}

Question: What is sizeof a? What is sizeof nums?

Pointers and
Multi-dimensional Arrays

• Consider int a[3][4]:
– a is an array of 3 arrays of 4 ints
– a[i] is an array of 4 ints
– sizeof a[i] == 16 (4*sizeof(int))

– How would you declare a pointer to a[0]?

Thinking in C ©1998 Fresh Sources 160

#include <stdio.h>

int main()
{

int a[][4] = {{0,1,2,3},{4,5,6,7},{8,9,0,1}};
/* Pointer to array of 4 ints: */
int (*p)[4] = a;
int i;
size_t nrows = sizeof a / sizeof a[0];
size_t ncols = sizeof a[0] / sizeof a[0][0];

printf("sizeof(*p) == %d\n",sizeof *p);
for (i = 0; i < nrows; ++i)
{

int j;
for (j = 0; j < ncols; ++j)

printf("%d ",p[i][j]);
putchar('\n');

}
return 0;

}

sizeof(*p) == 16
0 1 2 3
4 5 6 7
8 9 0 1

Thinking in C ©1998 Fresh Sources 161

/* 3d version */
#include <stdio.h>

int main()
{

int a[][3][4] = {{{0,1,2,3},{4,5,6,7},{8,9,0,1}},
{{2,3,4,5},{6,7,8,9},{0,1,2,3}}};

int (*p)[3][4] = a;
int i;
size_t ntables = sizeof a / sizeof a[0];
size_t nrows = sizeof a[0] / sizeof a[0][0];
size_t ncols = sizeof a[0][0] / sizeof a[0][0][0];

printf("sizeof(*p) == %d\n",sizeof *p);
for (i = 0; i < ntables; ++i)
{

int j;
for (j = 0; j < nrows; ++j)
{

int k;
for (k = 0; k < ncols; ++k)

printf("%d ",p[i][j][k]);
putchar('\n');

}
putchar('\n');

}
return 0;

}

sizeof(*p) == 48
0 1 2 3
4 5 6 7
8 9 0 1

2 3 4 5
6 7 8 9
0 1 2 3

Can you see a pattern here?

Thinking in C ©1998 Fresh Sources 163

• Prevents changing a pointer or its contents
• const before the asterisk means that the

contents is const
• const after the asterisk means that the

pointer is const
• volatile observes the same syntax

const char* p1; /* *p1 = ‘c’ illegal; ++p1 OK */
char* const p2; /* *p2 = ‘c’ OK; ++p2 illegal */
const char* const p3; /* no changes at all allowed */

Pointers and const

Thinking in C ©1998 Fresh Sources 164

• “Pointer to void” (void*)
• Can assign any pointer to or from a
void*
– Need to cast back to use the item

pointed at in C++
– cannot de-reference a void*

• Useful for:
– treating any object as a sequence of

bytes
– implementing generic containers

Generic Pointers

Thinking in C ©1998 Fresh Sources 165

void* memcpy(void* target, const void* source,
size_t n)

{
/* Copy any object to another */
char* targetp = (char*) target;
const char* sourcep = (const char*) source;
while (n--)

*targetp++ = *sourcep++;
return target;

}

int main()
{

float x = 1.0, y = 2.0;
memcpy(&x, &y, sizeof x);
printf("%d\n", x);
return 0;

}

2

Generic Pointer Example

Thinking in C ©1998 Fresh Sources 166

/* qsort.c: Illustrates qsort */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int comp(const void*, const void*);

int main()
{

char* strings[] =
{"how", "now", "brown", "cow"};

const unsigned int nstr =
sizeof strings / sizeof strings[0];

unsigned int i;

qsort(strings, nstr, sizeof strings[0], comp);
for (i = 0; i < nstr; ++i)

puts(strings[i]);
return 0;

}

Thinking in C ©1998 Fresh Sources 167

int comp(const void* p1, const void* p2)
{

char* a = *(char **) p1;
char* b = *(char **) p2;
return strcmp(a,b);

}

brown
cow
how
now

Thinking in C ©1998 Fresh Sources 168

Pointers to Functions
• A function name without its

argument list becomes a pointer
to the function

• Allows passing pointers as
arguments
– like comp in the call to qsort

• Explicit indirection not required
– don’t need to use & or * operators

Thinking in C ©1998 Fresh Sources 169

Function Pointer Syntax
/* fptr.c */
#include <stdio.h>

int main()
{

int i = 1;
int (*fp)(const char*, ...) = printf;
fp("i == %d\n", i);
/* or (*fp)(" i == ...); */
return 0;

}

i == 1

Thinking in C ©1998 Fresh Sources 170

Using typedef

/* fptr2.c */
#include <stdio.h>

int main()
{

typedef void (*ftype)(const char*, ...);
int i = 1;
ftype fp = (ftype) printf;
fp("i == %d\n", i);
return 0;

}

Thinking in C ©1998 Fresh Sources 171

Functions and Menu Choices

1) Retrieve

2) Insert

3) Update

4) Quit

Thinking in C ©1998 Fresh Sources 172

/* menu.c: Illustrates an
array of function ptrs */

#include <stdio.h>

/* You must provide definitions for these: */
extern void retrieve(void);
extern void insert(void);
extern void update(void);
/* Returns keypress: */
extern int show_menu(void);
int main()
{

int choice;
void (*farray[])(void) =

{retrieve,insert,update};
for (;;)
{

choice = show_menu();
if (choice >= 1 && choice <= 3)

/* Process request: */
farray[choice-1]();

else if (choice == 4)
break;

}
return 0;

}

Thinking in C ©1998 Fresh Sources 173

Incomplete Types

• Type whose size is undetermined at point
of declaration

• Array of unknown size:
– extern int a[]; /* Not a parameter */

• Structure that hasn’t been fully declared:
– struct foo; /* Forward declaration */

• Useful for information hiding

Canonical Example
• A Stack
• User only sees incomplete type and

interface functions
– as defined in stack8b.h

• Implementation is totally hidden
– in stack8b.c

Thinking in C ©1998 Fresh Sources 175

/* stack8b.h: Declarations
for a stack of ints */

#define STK_ERROR -32767

/* Incomplete type */
typedef struct Stack Stack;

Stack* stk_create(int);
void stk_push(Stack*, int);
int stk_pop(Stack*);
int stk_top(Stack*);
int stk_size(Stack*);
int stk_error(Stack*);
void stk_destroy(Stack*);

Thinking in C ©1998 Fresh Sources 176

/* stack8b.c: implementation */
#include "stack8b.h"
#include <stdlib.h>

/* Complete the Stack type */
struct Stack
{

int *data;
int size;
int ptr;
int error;

};

Stack* stk_create(int stk_size)
{

Stack* stkp = malloc(sizeof(Stack));
stkp->size = stk_size;
stkp->data = malloc(stkp->size*sizeof(int));
stkp->ptr = stkp->error = 0;
return stkp;

};

(The rest is on the CD ...)

Thinking in C ©1998 Fresh Sources 177

Summary
Pointers 102

• Pointers can refer to any C type
• An array name decays into a pointer to its first

element
– except when used with sizeof

• const can modify a pointer or its referent
• void* supports generic function arguments
• Function pointers allow functions as arguments
• Incomplete types support information hiding

Thinking in C ©1998 Fresh Sources 178

Exercise 1
Pointers 102

• Write a function:
void inspect(const void*, size_t);
which interprets its first argument as an
array of bytes,and the second is the size
of the first argument in bytes. This
function prints the contents of each byte
of its first argument in hexadecimal. Test
it on several different types of arguments
(int, float, etc.)

Thinking in C ©1998 Fresh Sources 179

Exercise 2
Pointers 102

• Move the definition of the Employee
struct in the exercise of Section 7 to
the implementation file (employ2.c),
leaving Employee as an incomplete
type in employ2.h. Use a typedef to
eliminate the need for repetition of the
struct keyword. You’ll have to use
access functions in lieu of referencing
salary directly in the test file.

Thinking in C ©1998 Fresh Sources 180

Exercise 3
Pointers 102

• Optional. Extend the 3d pointer-to-
array example in this section to 4
dimensions!

Thinking in C ©1998 Fresh Sources 181

Congratulations!
You’re ready to tackle C++

