
C++ Programming
~ Object-based Programming ~

Prepared for Ingenix, Inc.
Copyright 2004, Fresh Sources, Inc.

Object-based Programming

n Combines related data and functions
n Originated with Simula-67
n Objects are instances of “classes”

n Structures with member functions
n Aids greatly in program organization

n The class is the basic unit of modularity
n Some objects have a unique identity
n Objects can contain other objects

Agenda
n Member functions
n Constructors
n Member access control
n Destructors
n Object Management
n Dynamic Objects
n Operator Overloading
n Using IOStreams
n Static Members
n Volume 1: 4-6, 11-13; Volume 2: 4

Member Functions

n Called on behalf of an object of the class
type

n Uses “dot” syntax:
anObject.f()

n Inside member functions, the keyword
“this” gives a pointer to the object in the
call

n Example: employee2.cpp

Constructors
n Called automatically when objects are created

n To initialize them
n They do not acquire storage for them

n The initializer list is used to transfer data from
constructor parameters to data members
n Should be used for objects (efficiency)
n Optional for built-ins
n Must be used for special members

n const, reference members (rarely used)
n Initialized in declaration order!

Access Control
n Data members should not be modifiable by

users
n Objects should control their innards!
n Users only should see an interface

n Data can be made “private”
n So can functions (hidden implementation details)
n Using the class keyword instead of struct makes

things private
n Use public where needed

n Example: employee3.cpp

const Member Functions
n It is allowed and often useful to make objects
const
n They must be initialized when declared, of course

n No member function should change a const
object’s state
n From the user’s point of view

n You must declare which functions are safe to call
for const objects

n Use it everywhere it applies!!!
n Example: employee4.cpp

The Default Constructor
n A constructor that takes no arguments
n Not always needed

n Don’t blindly define one!
n Our Employee class doesn’t really need one

n Compiler defines it for you if you define no
constructors at all

n The compiler-generated default constructor
doesn’t really do anything
n Member sub-objects are always initialized anyway
n It is generated simply to let you define empty objects

n Example: time.cpp

Object Initialization
n All data members with constructors are

initialized automatically
n In declaration order
n If they appear in the initializer list, they use the

appropriate constructor
n If they don’t appear there, then their default

constructor is used (must exist in that case!)
n Then the body of the matching constructor

executes
n Examples: badInit.cpp, goodInit.cpp

Destructors
n Called automatically when an object “dies”

n Goes out of scope, or explicitly deleted, say
n Use to “de-initialize” an object

n “~ClassName()” syntax
n Most objects don’t need one!

n Only if they manage internal resources (memory,
files, connections, etc.)

n A pointer member is a hint that a destructor is
probably needed

n Example: File.cpp

A String Class
#include <cstring>
#include <iostream>

class String
{

char* data;

public:
String(const char* s = "")
{

data = new char[std::strlen(s) + 1];
std::strcpy(data,s);

}
~String() {delete [] data;} // Destructor
int size() const {return std::strlen(data);}
char getAt(int pos) const {return data[pos];}
void setAt(int pos, char c) {data[pos] = c;}
void display()
{

std::cout << data;
}

};

Using class String
int main()
{

String s = "hello"; // same as String s("hello");
for (int i = 0; i < s.size(); ++i)

cout << "s[" << i << "] == "
<< s.getAt(i) << std::endl;

String empty;
std::cout << '"';
empty.display();
std::cout << "\"\n";

}

/* Output:
s[0] == h
s[1] == e
s[2] == l
s[3] == l
s[4] == o
""
*/

Strange Behavior

int main()
{

String s = "hello";
String t = s; // same as String t(s);
t.setAt(0,'j');
s.display();

}

/* Output:
jello
<The instruction at “0x004022dd” referenced memory at
“0x00000008”. The memory could not be “written”.

*/

Initialization vs. Assignment
n Initialization occurs only once, when an object is

created
n always by some constructor

n Assignment occurs only after an object has been
initialized

n via operator=
n What constructor executed in the previous slide?

The Copy Constructor
n Initializes a new object as a copy of an existing

object
n of the same type

n Has signature T::T(const T&)
n Copies each member across

n using their own copy constructors recursively
n Generated by compiler

n But you can override it (and sometimes should)

Compiler-generated Copy Ctor
String(const String& s)

: data(s.data)
{}

// Identical to (in our case):

String(const String& s)
{

data = s.data;
}

// because pointers are not objects.

“Shallow Copy”

hello\0

s::data

t::data

n If you have a pointer as a data member, a
shallow copy is probably not what you
want

n By changing the referent in one object,
you also change it in the other object

n If you de-allocate the data member in one
object, you have created a likely fatal
situation in the other (double delete)

Problems with Shallow Copy

What should the Copy Ctor Do?

n Make a “Deep Copy”:
n Allocate new heap space
n Copy characters to target

A “Deep Copy” Copy
Constructor

// You must do this when you need deep copy:
String(const String& s)
{

data = new char[strlen(s.data)+1];
strcpy(data, s.data);

}

More Strange Behavior
n Why does changing t affect s below?

int main()
{

String s = "hello"; // same as String s(“hello”);
String t;
t = s;
t[0] = 'j';
cout << s << endl;

}

jello

Object Assignment
n Uses operator=

n must be a member
n Generated by the compiler

n assigns individual members
n String::operator= just assigns the pointer data
n but we want to replicate the underlying characters!

n You can override it
n and should whenever an object’s state is external to

itself
n a pointer (or reference) member is a sign that
operator= needs help

Compiler-generated Assignment

String& String::operator=(const String& rhs)
{

data = rhs.data;
return *this;

}

hello\0

s

t

What should
String::operator= Do?

n Allocate new heap space
n Copy characters to target
n Delete the old heap space
n Return *this
n Avoid Self-assignment

n For optimization

Correct Assignment

String& String::operator=(const String& s)
{

if (&s != this)
{

char* new_data = new char[strlen(s.data)+1];
strcpy(new_data, s.data);
delete [] data;
data = new_data;

}
return *this;

}

Object Management Summary
n Copy Constructor

n the compiler generates it only if you don’t
n does shallow copy

n All Other Constructors
n if you don’t provide any constructors at all, the compiler

generates a default constructor (which default-constructs
each member)

n Single-arg constructors are special (“conversion
constructors”)

n Assignment Operator
n the compiler generates it only if you don’t
n does shallow assignment

n Destructor
n the compiler generates only if you don’t (calls each member’s

destructor)

Standard Conversions

n Implicit promotion of numeric types
n Widening of:

n char -> short -> int -> long
n Promotion from integer to floating-point
n Occurs in mixed-mode expressions (x + i)

and in passing parameters
n Prototypes initiate the conversion for parms

Implicit Conversions to Class
Type

n Achieved through a single-argument
constructor
n Also called a “converting constructor”
n Or less commonly, through a conversion

operator (will see later)
n You can turn it off

n With a special keyword (explicit)
n Example: convert.cpp

Dynamic Objects
n Can store objects on the heap (“free store”)
n Use the new operator
n You get a pointer back
n Objects are always initialized

n A constructor executes
n You can also initialize built-ins in the new statement:
int* p = new int(8); // *p == 8

n Always delete a heap pointer when you’re
finished
n The biggest source of C++ bugs!

n Example: initObjects.cpp

Operator Overloading
n Binary operators
n Unary operators
n Stream operators
n Conversion Operators
n Special operators (may skip some of these)

n Indexing
n Pre-post increment/decrement
n Smart pointers (operator ->)
n Function call (crucial to STL)

Why Operator Overloading?

n A Notational Convenience
n Motivated by Mathematics

n e.g., basic operations on matrices, vectors,
etc.

n Results in clearer code
n if used wisely!

Complex Numbers
n The Canonical Example
n Complex numbers are pairs of real

numbers
n (real, imaginary), e.g., (2,3), (1.04, -12.4)
n like points in the x-y plane
n (a, b) + (c, d) = (a+c, b+d)
n applications in Electrical Engineering

n Compare function-style operations to
using operator functions

A complex Class
#include <iostream>

class complex
{

double real;
double imag;

public:
complex(double real=0, double imag=0)
{

this->real = real;
this->imag = imag;

}
complex add(const complex& c) const
{

complex result;
result.real = this->real + c.real;
result.imag = this->imag + c.imag;
return result;

}
void display(std::ostream& os) const
{

os << '(' << real << ',' << imag << ')';
}

};

Using the complex Class

using namespace std;

int main()
{

complex z(1,2), w(3,4);
complex a = z.add(w); // want a = z+w
a.display(cout);

}

(4,6)

Operator Functions
n operator keyword together with an operator

n operator+
n operator-

n etc.
n Can overload all operators except:

n ::
n .
n .*
n ?:

complex with operator+
class complex
{

// ...
public:

// ...
complex operator+(const complex& c) const
{

complex result;
result.real = this->real + c.real;
result.imag = this->imag + c.imag;
return result;

}
// ...

};

int main()
{

complex z(1,2), w(3,4);
complex a = z + w; // z.operator+(w)
a.display(cout);

}

Rules
n operator+ is the function name

n you can also invoke it directly as
z.operator+(w)

n a binary function, of course
n Normal precedence rules apply
n Can be either a global or member function
n If member, this is the left operand
n If global, one argument must be user-

defined

Conversion Constructors and
Operator Overloading

n For example T::T(int)
n Can use 2 initialization syntaxes:

n T t(1);
n T t = 1;

n Provide implicit conversions
n t + 1 becomes t + T(1)

n Can disable with the explicit keyword

complex Conversion

class complex
{
public:

complex(double real = 0, double imag = 0)
{

this->real = real;
this->imag = imag;

}
// …

};

int main()
{

complex w(3,4);
complex a = w + 1; // w + (1,0)
a.display(cout);

}

(4,4)

Member vs. Non-member
Operators

n The expression 1 + w does not compile.
n Left-operand must be a class object to match a

member operator
n A global operator will apply an implicit

conversion to either operand via a single-arg
constructor, if available

n In general, binary operators should be global
n In general, unary operators should be members

Global complex Operators

class complex
{
public:

complex(double real = 0, double imag = 0)
{

this->real = real;
this->imag = imag;

}
double getReal() const {return real;}
double getImag() const {return imag;}
// ...

};

complex operator+(const complex& c1, const complex& c2)
{

double real = c1.getReal() + c2.getReal();
double imag = c1.getImag() + c2.getImag();
complex result(real, imag);
return result;

}

A Unary complex Operator

class complex
{
public:

complex operator-() const
{

return complex(-real, -imag);
}
// …

};

int main()
{

complex w(3,4);
complex a = -w;
a.display(cout);

}

(-3,-4)

Stream Operators
n operator << and operator >>
n Must be global

n because left operand is a stream!
n Stream is passed by reference

n for efficiency
n Should return the stream

n to support chaining insertions and extractions

complex Stream Output

ostream& operator<<(ostream& os, const complex& c)
{

os << '(' << c.getReal() << ',’
<< c.getImag() << ')';

return os;
}

int main()
{

complex w(3,4);
complex a = -w;
cout << a << endl;

}

(-3,-4)

A “Complete” complex

n Would provide all pertinent operators
n including assignment ops such as +=, -=, etc.
n assignment ops must be members

n Provides stream insertion and extraction
n Global functions are class friends

n not necessary, just a convenience

operator[]

n A Unary Operator
n Must be a member
n For “array-like” things

n vectors, strings
n Must provide two versions:

n version for const objects
n version for non-const objects
n other operators may require this special handling

A “Safe” Array class
class Index
{

enum {N = 100};
int data[N];
int size;

public:
Index(int n)
{

if (n > N)
throw "dimension error";

for (int i = 0; i < n; ++i)
data[i] = i;

size = n;
}
int getSize() const {return size;}
int& operator[](int i)
{

if (i < 0 || i >= size)
throw "index error";

return data[i];
}

};

Using Index

#include <iostream>
using namespace std;

int main()
{

Index a(10);
for (int i = 0; i < a.getSize(); ++i)

cout << a[i] << ' ';
cout << endl;
a[5] = 99;
cout << a[5] << endl;
cout << a[10] << endl;

}

0 1 2 3 4 5 6 7 8 9
99
abnormal program termination

Using a const Index

#include <iostream>
using namespace std;

int main()
{

const Index a(10); // a const Index
for (int i = 0; i < a.getSize(); ++i)

cout << a[i] << ' '; // COMPILE ERROR!
cout << endl;

}

Supporting a const Index

class Index
{

// ...
int& operator[](int i)
{

if (i < 0 || i >= size)
throw "index error";

return data[i];
}

int operator[](int i) const // A const version
{

if (i < 0 || i >= size)
throw "index error";

return data[i];
}

};

Conversion Operators
n The complement to single-arg constructors
n Provide implicit conversions to another type
n Member function with the signature:

operator T() const;

Index-to-double Conversion

class Index
{

// ...
operator double() const
{

double sum = data[0];
for (int i = 1; i < size; ++i)

sum += data[i];
return sum / size;

}
};

int main()
{

const Index a(10);
double x = a + 1;
cout << x << endl;

}

5.5

Warning!
n Why shouldn’t the complex class have a

conversion operator to int or double?
n Hint: consider the expression

w + 1

where w is complex.
n You can turn off implicit conversions of single-

arg constructors with the explicit keyword:
explicit complex(double = 0, double = 0);

Other Operators

n -> for “smart pointers”
n e.g., auto_ptr in the standard library

n ++, --
n Pre and post versions

n (), “function-call” operator
n We’ll see this when we do STL

Overloading operator->

n For when you want to add functionality to
the built-in operator->

n Must return a raw pointer
n Or something that can be dereferenced

n Example: SafePtr.cpp

auto_ptr

n A standard wrapper for memory allocation
n A smart pointer

n Can use -> and * normally
n Its destructor automatically calls delete

n Which automatically calls the destructor
n Unfortunately, can’t use for arrays

n Example: File2.cpp

Overloading ++ and --

n Must distinguish between pre and post
n Post versions take an extraneous int argument

n The post versions must save current value
n That’s why the pre versions are more efficient
n They should also return a const object

n To disallow x++++
n Illegal, modifies temporary

n Examples: PrePost.cpp, SafeArrayPtr.cpp

Overloading operator()

n The Function Call Operator
n Constitutes a Function Object

n An object that can behave like a function
n Compensates for C++ not being Lisp!

n If class T::operator() exists:
n Then t() acts like a function call

n Example: findGreater.cpp,
findGreater2.cpp

Using IOStreams

n IOStreams are powerful objects
n Creating input operators are tricky

n Also called “extractors”
n operator>>

n Must set stream state

Why IOStreams?

n Brings the advantages of objects to I/O
n Constructors connect to sources/sinks
n Destructors disconnect
n Can get/set stream state
n Operator Overloading

Inserters

n Inserts an object into a stream
n that is, it does output

n Uses operator<<
n the left-shift operator
n the arrow suggest the direction of the data

flow
n Easy to define for your own classes

Defining an Inserter

n The signature of the function is:
ostream& operator<<(ostream&, const

T&);
n The stream is not const

n because its state will change
n You return a reference to the stream

n to allow chaining (multiple “<<“’s)

Inserter Example

n A Date class inserter:

ostream& operator<<(ostream& os, const Date& d) {
char fillc = os.fill('0');
os << setw(2) << d.getMonth() << '-'

<< setw(2) << d.getDay() << '-'
<< setw(4) << setfill(fillc) << d.getYear();

return os;
}

Extractors

n Consume input from a stream
n Uses operator>>
n Signature is

istream& operator>>(istream&, T&);
n The object is not const because it is going

to get overwritten with input!
n How do you know if it worked

n e.g., you want an int and got alphas

Extractor Example

n A Date class again:
istream& operator>>(istream& is, Date& d) {
is >> d.month;
char dash;
is >> dash;
if(dash != '-')
is.setstate(ios::failbit);

is >> d.day;
is >> dash;
if(dash != '-')
is.setstate(ios::failbit);

is >> d.year;
return is;

}

Stream State
n 4 states:

n good
n eof
n fail (unexpected input type, like alpha for numeric)

n also set by eof
n bad (device failure)

n Once a stream is no longer good, you can’t use it
n all ops are no-ops
n Can clear with clear() (must after a failed op!)

n Can test with associated functions:
n good(), eof(), fail(), bad()

n Can test for good() like this:
n if (theStream) [same as if (theStream.good())]

Streams and Exceptions

n Can have exceptions thrown instead of
checking state

n Call the exceptions() member function
n Can pick which states you want to throw:

myStream.exceptions(ios::badbit);
n The exception type thrown is ios::failure

n we’ll see the ios base class later

File Streams
n Classes ifstream, ofstream, fstream

n declared in <fstream>
n Constructors open, destructors close
n All normal stream operations apply
n Additional member functions:

n close(), open()
n Open modes

n ios::in, ios::out, in::app, in::ate, ios::trunc, ios::binary
n Can combine with the bitwise or (|)

n Example: StrFile.cpp

String Streams
n Classes istringstream, ostringstream,

stringstream
n declared in <sstream>

n Writes to or reads from a string
n or both

n Useful for converting other data types to and
from strings

n Examples: IString.cpp, DateIOTest.cpp,
Ostring.cpp

Output Formatting

n Can set stream attributes
n width, fill character, alignment, numeric base,

floating-point format, decimal precision, etc.
n Use setf() and unsetf()
n Example: Format.cpp

Object “Serial Numbers”

n Suppose you want to have an object id
field that automatically increments
whenever you create an object

n Where do you store that counter?

Static Data Members
n Belong to the whole class

n Not each object
n Have static storage class

n Just like globals and local statics
n But are inside the scope of their class
n Must declare inside the class, but define

outside the class!
n Example: serialObjects.cpp

Counting Objects

n Similar to the serial number issue
n Except keeps a current count

n Destructor decrements counter
n Question: How do you retrieve the count

through a method
n Remember, public data is bad.

Static Member Functions

n “Class Methods”
n Free-standing functions (like globals)
n But are in the scope of the class
n Have no “this” pointer

n Are called without an object
n T::f();

n Example: countObjects.cpp

Class Constants

n Static members that are const
n Can initialize inside class, if desired

n Can use as an array dimension, for example
n You still have to define the space outside the

class definition
n Another technique:

n Using enum in a class (I prefer it)

Static Class Constants

class Customer
{
private:

static const int MAXCONTACTS = 100;
Contact contacts[MAXCONTACTS];

…
};

const int Customer::MAXCONTACTS; // No initializer!

Enumerated Constants

n Uses enum keyword
n Defaults to 0, 1, 2, …
n True compile-time, integral constants

n Take no space
n Therefore, behave like statics

n Don’t occupy space in an object

enum Example
class Customer
{
private:

enum {MAXCONTACTS = 100};
Contact contacts[MAXCONTACTS];

…
};

// No definition here!

Exercise
n Create a class, Rational, that supports

rational numbers (fractions) as explained
in Rational.doc

n This is time consuming but worth it.
n Try to do it stepwise:

n Implement some of the functionality, then test
n Repeat
n Full test program in trational.cpp

