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Object-oriented Programming

n Quantifies “is-a” relationships between 
classes

n Increases code quality through code reuse
n Enhances power of expression and code 

maintainability through dynamic function 
binding (polymorphism)



Agenda
n Inheritance
n Protected members
n Virtual functions
n Virtual destructors
n Abstract classes
n Interfaces
n Exceptions
n Volume 1: 14, 15; Volume 2: 1, 9



An Employee Class

class Employee
{

string name;
double rate;
double timeWorked;

public:
Employee(const string& ename, double erate)

: name(ename)
{

rate = erate;
}

string getName() const        {return name;}
double getRate() const        {return rate;}
double getTimeWorked() const  {return timeWorked;}

void recordTime(double etime) {timeWorked = etime;}
double computePay() const;

};



double Employee::computePay() const
{

const double& hours = timeWorked;
if (hours > 40)

return 40*rate + (hours - 40)*rate*1.5;
else

return rate * hours;
}

int main()
{

using namespace std;
Employee e("John Hourly",16.50);
e.recordTime(52.0);
cout << e.getName() << " gets ”

<< e.computePay() << endl;
}

John Hourly gets 957.00



Salaried Employees

n Suppose we now want to process salaried
employees

n Only the computePay method changes
n We don’t want to have to repeat the other 

code
n How can we reuse/extend Employee?



The SalariedEmployee Class

class SalariedEmployee : public Employee
{
public:

SalariedEmployee(const string&, double);
double computePay() const;

};

SalariedEmployee::SalariedEmployee(const string& ename,
double erate)

: Employee(ename, erate)
{}

double SalariedEmployee::computePay() const
{

return getRate() * getTimeWorked();
}



int main()
{

using namespace std;
SalariedEmployee e("Jane Salaried",1125.00);
e.recordTime(1.0);
cout << e.getName() << " gets "

<< e.computePay() << endl;
}
Jane Salaried gets 1125



Inheritance

n (Public) inheritance implements an “is-
a” relationship
n you rarely use more restrictive inheritance
n access of inherited members doesn’t change
n private members of a base class are not

accessible in derived class methods
n public inheritance is the default for struct

n A SalariedEmployee object inherits all 
data and methods from Employee
n because it “is-a” Employee
n but it overrides computePay



Terminology

n A base class is a class you extend by 
inheritance
n also called a superclass

n A derived class is a class that inherits 
from another
n also called a subclass
n you can add new data members
n you can add/replace member functions

n Member functions are also called 
methods



Adding New Members

class SalariedEmployee : public Employee
{

int salaryGrade; // a new member

public:
// ...
void setSalaryGrade(int g) {salaryGrade = g;}
int getSalaryGrade()      {return salaryGrade;}

};



name
rate
timeWorked

salaryGrade

Employee

SalariedEmployee

Base Class Subobjects



n The base class constructor(s) run(s) first
n in declaration order, if multiple inheritance
n you pass arguments to base class constructors only

through the member initializer list
n if the base class has a default constructor, no explicit 

initializer is necessary
n Then any member objects are initialized

n in declaration order
n Then the derived class constructor runs
n Destruction is the reverse of this process

Object Initialization
The Real Story



#include <iostream>
using namespace std;

struct A {
A()  {cout << "A::A()\n";}
~A() {cout << "A::~A()\n";}

};

struct B {
B()  {cout << "B::B()\n";}
~B() {cout << "B::~B()\n";}

};

struct C : A {
C()  {cout << "C::C()\n";}
~C() {cout << "C::~C()\n";}
B b;

};

int main() {
C c;

}

A::A()
B::B()
C::C()
C::~C()
B::~B()
A::~A()



// Using Initializers
#include <iostream>
using namespace std;

struct A
{

A(int i)  {cout << "A::A(" << i << ")\n";}
~A() {cout << "A::~A()\n";}

};

struct B
{

B(int j)  {cout << "B::B(" << j << ")\n";}
~B() {cout << "B::~B()\n";}

};

struct C : A
{

C(int i, int j) : A(i), b(j) 
{

cout << "C::C(" << i << ',' << j << ")\n";
}
~C() {cout << "C::~C()\n";}
B b;

};
int main()
{

C c(1,2);
}



A::A(1)
B::B(2)
C::C(1,2)
C::~C()
B::~B()
A::~A()



Exercise
n Create two classes called Traveler and Pager

without default constructors, but with 
constructors that take an argument of type 
string, which they simply copy to an internal 
string variable. Now derive a class named 
BusinessTraveler from Traveler and give it 
a member object of type Pager. Write the a 
default constructor, a constructor that takes 
two string arguments, and a stream inserter.



n There is a third access specifier -
protected
n protected members are available to derived 

classes but not to other clients

Protected Members



Protected Employee Members
class Employee
{
protected:

string name;
double rate;
double timeWorked;

public:
Employee(const string& ename, double erate)

: name(ename)
{

rate = erate;
}

// (Access functions no longer necessary)
void recordTime(double etime) {timeWorked = etime;}
double computePay() const;

};



Protected Employee Members

n SalariedEmployee::computePay is now 
simpler

double SalariedEmployee::computePay() const
{

return rate * timeWorked; // access protected
// members

}



Name Hiding “Gotcha”

n Beware when “overriding” functions in 
derived classes

n Example: Hide.cpp



Name Lookup Rules
n 1. Find a scope for the name

n A class constitutes a scope
n A derived class scope is “nested” in the base 

class’s scope
n 2. Perform overload resolution in that 

scope
n Pick unambiguous “best fit”

n 3. Check access permission
n Examples: Lookup1-3.cpp



Upcasting

n An Employee* can hold a 
SalariedEmployee*

n Because of the “is-a” relationship
n A SalariedEmployee can take the place of an 

Employee object
n unless the code assumes hourly employee 

behavior
n Hence, an array of Employee* can hold 

pointers to a mixture of the two types



The Goal

n To treat all objects as base objects
n via a pointer-to-base

n But to have their behavior vary 
automatically

n depending on the dynamic type of the object

Employee
SalariedEmployee

etc.

Employee SalariedEmployee



Heterogeneous Collections

int main()
{

using namespace std;
Employee e("John Hourly",16.50);
e.recordTime(52.0);
SalariedEmployee e2("Jane Salaried",1125.00);
e2.recordTime(1.0);
Employee* elist[] = {&e, &e2};
int nemp = sizeof elist / sizeof elist[0];

for (int i = 0; i < nemp; ++i)
cout << elist[i]->getName() << " gets "

<< elist[i]->computePay() << endl;
}

John Hourly gets 957
Jane Salaried gets 1125 // beware a subtle bug!



Which computePay?

// After inserting trace statements in
// Employee::computePay and
// SalariedEmployee::computePay

Employee::computePay
John Hourly gets 957
Employee::computePay // Oops!
Jane Salaried gets 1125



n The traditional (non-OO) approach to 
polymorphism is a switch statement

Traditional Solution

void computePay(Employee* emp)
{

switch(emp->type()) // type tag required
{
case EMPLOYEE:

computeHourlyPay(emp);
break;

case SALARIED:
computeSalariedPay(emp);

break;
// ...
}

}



n The programmer is completely 
responsible for the function selection 
process.

n Each time a new type of customer is 
added, each switch statement in the 
system will need to be updated

n The code quickly grows and becomes 
complicated.

Problems with the Traditional 
Method



Function Binding

n Determines the code that executes for a 
functions call

n Static binding occurs at compile time
n what we’re used to

n Dynamic binding occurs at run time
n what Java and SmallTalk folks are used to
n what we want here
n determined by the dynamic type of object pointed 

to



Polymorphism

n G[r]eek for “many forms”
n “One interface, many implementations”
n Overloading is a form of static 

polymorphism
n We want run time polymorphism

n i.e., dynamic binding
n what is usually meant by “polymorphism”

n Achieved in C++ via virtual functions



A virtual computePay

class Employee
{

// ...
public:

// ...
virtual double computePay() const;

};

Employee::computePay
John Hourly gets 957
SalariedEmployee::computePay // Right!
Jane Salaried gets 1125



How Virtual Functions Work

vptr
name
rate
timeWorked

Employee
Employee::computePay()

vtable for Employee

vptr
salaryGrade

SalariedEmployee

SalariedEmployee::computePay::

vtable for SalariedEmployee

•Each class has a vtable (pointers to its virtual functions)
•Each object has a vptr (points to its class’s vtable)



Advantages of Dynamic Binding

n Client code can just deal with the base 
type (e.g., Employee*)

n Behavior varies transparently according to 
an object’s dynamic type

n Client code remains unchanged when new 
derived types are created!

n No “ripple effect” for maintainers



Derived Destructors

n Recall that base class destructors are 
called automatically when a derived object 
dies:
struct B
{

~B() {std::cout << "~B\n";}
};
struct D : B // public by default
{

~D() {std::cout << "~D\n";}
};
int main()
{

D d;
}
~D
~B



Deleting via a Pointer-to-Base

int main()
{

B* pb = new D;
delete pb;

}

~B // Oops! Derived part not destoyed!



Virtual Destructors

• Needed when deleting via a pointer-to-base

struct B
{

virtual ~B() {std::cout << "~B\n";}
};

int main()
{

B* pb = new D;
delete pb;

}

~D // Fixed!
~B



n Destructors can be declared virtual
n necessary when a base class pointer or 

reference refers to a derived class object
n if the destructor is not declared virtual, 

only the base class destructor is called
n this may cause a memory leak

n Rule: A class that contains a virtual 
function should also declare a virtual 
destructor

Virtual Destructors



Abstract Classes

n Sometimes a base class is just a conceptual 
entity
n a category, or umbrella for related classes
n you won’t instantiate any objects of that type

Vehicle

Car Truck Bus



A Better Employee Hierarchy

Employee

HourlyEmployee SalariedEmployee

A



Pure Virtual Functions

n Abstract classes usually have abstract 
methods:
n “Place holder” member functions to be 

overridden in derived classes
n Don’t need an implementation in the base 

class
n The presence of such a pure virtual

function makes its class abstract
n Append “= 0” to the function’s 

declaration



An Abstract Employee Class
class Employee
{
public:

Employee(const string& ename, double erate)
: name(ename)

{
rate = erate;

}

string getName() const {return name;}
double getRate() const {return rate;}

void recordTime(double etime) {timeWorked = etime;}
virtual double computePay() const = 0; // pure virt.
virtual ~Employee() {} // !!!

protected:
string name;
double rate;
double timeWorked;

};



The HourlyEmployee Class
class HourlyEmployee : public Employee
{
public:

HourlyEmployee(const string& ename, double erate)
: Employee(ename, erate)

{}
double computePay() const;

};

double HourlyEmployee::computePay() const
{

cout << "HourlyEmployee::computePay()\n";
const double& hours = timeWorked;
if (hours > 40)

return 40*rate + (hours - 40)*rate*1.5;
else

return rate * hours;
}



Interfaces
n An interface is a set of function 

specifications
n Simply defines a group of functions

n Non-static functions (meant to be applied to 
objects of types that implement the interface)

n An interface is also called a (formal) type
n In C++, an interface is a class containing 

only pure virtual functions (no bodies)
n Example: interfaces.cpp



OO Programming - Summary
n Inheritance supports:

n an “is-a” relationship between classes
n consolidation of code (just define what changes)
n class specialization

n Upcasting treats a derived object as a base 
object

n Virtual Functions implement dynamic binding
n A class with a virtual function should have a 

virtual destructor also
n Abstract classes represent a concept, and 

cannot be instantiated



Exercise
n Define an abstract class named Vehicle with an id 

number as a data member, and two pure virtual 
functions, stop() and go(). Derive two classes from 
Vehicle, Car and Truck. Override stop() and go() in 
the derived classes to print a statement that 
identifies what they’re doing (e.g., Truck::stop()
might say “Stopping Truck #2”). Define a destructor 
in the derived classes that just announces itself. 
Create an array of pointers to Vehicle in main() that 
holds a Car and a Truck on the heap, then iterate 
through the array calling stop() and go() to verify 
that dynamic binding is taking place. Now define a 
virtual destructor in Vehicle and test again.



Exceptions

n The Philosophy of Exceptions
n The Mechanics of Exceptions
n Exceptions and Resource Management
n Exception Specifications
n Exception Safety



Pop Quiz!

n What does printf( ) return?



Leading Question

n When was the last time you checked the 
return value from printf( )?



Error Handling via Return 
Codes

n You don’t always check them
n (Did I make my point? :-)

n If you do, the extra code clutter obscures 
the readability of your program logic

n Even if no errors occur, you’re always 
wasting cycles checking for them
n applies to other error-code schemes as well

n e.g., errno



The Philosophy of Exceptions

n You can’t ignore them
n Handle them or die!

n Error handling code is localized
n Code is more readable

n Your code runs faster!
n If no errors occur

n Yes, there is a space penalty
n But it’s minimal and worth it!



// Illustrates handling “deep errors”

#include <iostream>
using namespace std;

void h()
{

throw "h() has a problem";
}

void g()
{

h();
cout << "doing g..." << endl;

}

void f()
{

g();
cout << "doing f..." << endl;

}



int main()
{

try
{

f();
}
catch(const char* msg)
{

cerr << "Error: " << msg << endl;
}

cout << "back in main" << endl;
}

/* Output:
Error: h() has a problem 
back in main
*/



Preliminary Details
n The purpose of a try-block is to place exception 

handlers (“catch-clauses”) into the execution 
stream

n The throw expression transfers control to an 
upstream handler
n the nearest-enclosing “matching” handler

n according to the type of exception thrown
n so it can recover from the error



Pretty Good Idea #1

n Use exceptions to indicate errors
n For functions that can’t fulfill their 

specification
n Not for alternate returns under normal 

circumstances



Potential Problem

n What if local objects are created?
n In f( ), g( ), say

n They may need their destructor called
n Not a problem



Stack Unwinding

n As execution backtracks up the call stack, 
local objects have their destructors called

n Allows for convenient resource 
deallocation
n A key to exception safety



#include <iostream>
using namespace std;

void h()
{

Foo f3;
throw "h() has a problem";

}

void g()
{

Foo f2;
h();
cout << "doing g..." << endl;

}

void f()
{

Foo f1;
g();
cout << "doing f..." << endl;

}



int main()
{

try
{

f();
}
catch(const char* msg)
{

cerr << "Error: " << msg << endl;
}

cout << "back in main" << endl;
}

/* Output:
Foo
Foo
Foo
~Foo
~Foo
~Foo
Error: h() has a problem 
back in main
*/



How to Throw Exceptions

n throw keyword
n Throw objects of user-defined classes

n Can hold auxiliary information
n Allows clear categorization of errors

n Use constructor syntax



// Exception class
class MyError
{

string msg;
public:

MyError(const string& s) : msg(s) {}
string what() {return msg;}

};

// ...



void h()
{

throw MyError("h() has a problem");
}



int main()
{

try
{

f();
}
catch(MyError& x)
{

cerr << "MyError: " << x.what() << endl;
}

// Control goes here ("termination semantics")
cout << "back in main" << endl;

}



Catching Exceptions
n Execution backtracks until it finds a matching 

handler
n Exact type, or
n An accessible base class type
n Beware built-in types

n rules are complicated; use classes!
n string literals are const char*

n (not caught via a char* catch parameter)
n Not all conversions apply!

n Sufficient info not available at runtime!



If D derives from B…

n catch(B&) catches a B or a D
n so order of handlers in code matters!
n B must be an unambiguous, public base for D

n catch(B*) catches a B* or D*
n catch(void*) catches all pointer types



Order Matters!

n Handlers are tried in order of their 
appearance in the code

n Most specific handlers should appear first
n Derived class handlers should precede 

base class handlers
n catch(…), if present, should be last



Uncaught Exceptions

n If no handler is found, the library function 
terminate() is called
n Which just calls abort()

n If you want to prevent termination:
n Make sure all exceptions are caught!

n You can install your own terminate handler
n With set_terminate()



What should terminate do?

n Log the error
n Tidy-up as needed (release global 

resources, if any)
n exit the program
n terminate cannot:

n return
n throw exceptions



set_terminate
#include <iostream>
#include <exception> // for set_terminate()
#include <cstdlib> // for exit()
using namespace std;

void handler()
{

cout << "Renegade exception!\n";
exit(1);

}

int main()
{

void f();
set_terminate(handler);

try
{

f();
}



catch(long)
{

cerr << "caught a long" << endl;
}

}

void f()
{

throw "oops";   // Doesn’t match a long
}

// Output:
Renegade exception!



terminate() is called when...

n A matching handler is not found, including 
when:
n a constructor for a static object throws
n An exit handler (from atexit) throws

n A destructor throws during stack 
unwinding
n Only one exception at a time, thank you!
n Destructors shouldn’t emit exceptions



How does all this really work?

n throw is conceptually like a function call
n Takes the exception object as a “parameter”

n This special “function” backtracks up the 
program stack (the dynamic call chain)
n Reading information placed there by each 

function invocation
n Information placed in each “Stack Frame”
n About each function’s local objects and try blocks

n If no matching handler is found in a function, 
local objects’ are destroyed and the search 
continues
n Until a matching handler is found
n Or terminate( ) is ultimately called



Space Overhead

struct C
{

~C(){}
};

void g(); // for all we know, g may throw

void f()
{

C c; // Destructor must be called
g();

}



Compiler Exception Support

n Microsoft Visual C++ .NET (-GX)
n 1,420 bytes vs. 2,069 bytes

n Borland C++ Builder 6.0 (-x-)
n 813 bytes vs. 2,150 bytes



Runtime Overhead

n Two Types
n Adding exception-related info to each stack 

frame
n The work done during stack unwinding

n This is good overhead, since you want things 
cleaned up

n Following return-code paths the old-fashioned way 
has a cost too, you know!



The Zero-cost Model
n Adorning each stack frame with exception-

related info can have a runtime cost
n Can be avoided

n Offsets for objects with destructors can be 
computed once at compile time and stored 
outside the runtime stack

n GNU and Metrowerks compilers currently 
support this



Another Leading Question

Since exception objects originate in a 
different scope from where they’re caught, 
how are they accessible in a handler?



Answer

n Exception objects are temporaries
n A copy is thrown

n Const-ness is stripped away (except for string literals)
n Exceptions must be copyable and destructible

n accessible in the context of the throw expression

n Catching by value creates an additional copy
n And derived objects caught as a base are sliced

n Catch-by-pointer, is problematic (how to know 
whether you have to delete it)?



Pretty Good Idea #2

n Catch exceptions by reference.
n What about const reference?

n A local stylistic concern
n Const and volatile are ignored in finding a 

matching handler
n You can modify the exception object as it 

moves up the stack
n because the same object is re-thrown



Standard Exceptions

n Thrown by the Standard Library
n Hierarchy of Logic vs. Runtime Errors
n exception base class



Standard Exceptions

n exception
n logic_error (client program error)

n domain_error, invalid_argument, length_error, 
out_of_range

n runtime_error (external error)
n range_error, overflow_error, underflow_error

n bad_alloc (memory failure)
n bad_cast (bad dynamic_cast w/ref)
n bad_exception (unexpected)
n bad_typeid (typeid w/null)



try
{

string s;
cout << s.at(100) << endl;  // invalid arg

}
catch (logic_error& x)
{

cout << "logic_error: " << x.what()
<< endl;

}
catch (runtime_error& x)
{

cout << "runtime_error: " << x.what()
<< endl;

}
catch (exception& x)
{

cout << "exception: " << x.what()
<< endl;

}



// Output:
logic_error: position beyond end of string



Using Standard Exceptions

#include <iostream>
#include <stdexcept>
#include <string>
using namespace std;

// Exception class (polymorphic because 
// std::exception is)
struct MyError : runtime_error
{

MyError(const string& msg)
: runtime_error(msg){}

};



int main()
{  

try
{

f();
}
catch (MyError& x)
{

cerr << x.what() << endl;
}
catch (exception& x)
{

cerr << x.what() << endl;
}
catch (...) // catch-all
{

cerr << "Unknown error\n";
}

cout << "back in main" << endl;
}



// Using RTTI (a sometimes-useful trick):
int main()
{

try
{

f();
}
catch(exception& x)
{

cerr << typeid(x).name() << ':' 
<< x.what() << endl;

}
catch (...) // catch-all
{

cerr << "Unknown error\n";
}

cout << "back in main" << endl;
}

MyError:h()has a problem
Back in main



Pretty Good Idea #3

n Throw objects of classes derived 
(ultimately, not necessarily directly) from 
std::exception

n (std::exception does not take a std::string 
parameter in its ctor)



What Should a Handler Do?

n Fully recover, then resume somehow, or
n Partially recover and re-throw the 

exception
(by using throw;)



Pretty Good Idea #4

n If you can’t do anything about an 
exception, don’t catch it!

n Unless you need to release resources
n then re-throw the exception



Pretty Good Idea #5

n catch(...) should usually re-throw



Resource Management

n Dangling Resource Problem
n a function that allocates a resource might 

throw before deallocating the resource
n Solutions:

n Handle the situation locally
n use an Object Wrapper (RAII)

n auto_ptr, the standard wrapper for 
memory
n a smart pointer



A Dangling Resource

void f(const char* fname)
{

FILE* fp = fopen(fname,"r");
if (fp)
{

g(fp); // Suppose g() throws? 
fclose(fp); // Then this won't happen!

}
}

// continued...



Local Handlers

void f(const char* fname)
{

FILE* fp = fopen(fname,"r");
if (fp)
{

try
{

g(fp);
}
catch(...)
{

fclose(fp);
puts("File closed");
throw;  // Re-throw for

// other handlers
}
fclose(fp); // The normal close

}
}



RAII

n “Resource Allocation is Initialization”
n Use objects on the stack to control 

resources
n The constructor allocates
n The destructor deallocates



Object Wrappers
(To leverage stack unwinding)

class File
{

FILE* f;

public:
File(const char* fname, const char* mode)
{

f = fopen(fname, mode); // allocate
}
~File()
{

fclose(f); // deallocate
puts("File closed");

}
};



void f(const char* fname)
{

File x(fname,"r");
g(x.getFP());

}



Pretty Good Idea #6

n Use object wrappers to manage resources



Memory Leaks

void f()
{

T* p = new T;
g(p); // Suppose g() throws?
delete p;  // Then this won't happen!

}



auto_ptr

void f()
{

auto_ptr<T> p(new T);
g(p);

}

// delete p is implicit



Another auto_ptr Example

Employee* Employee::read(istream& in)
{
// Create object from file data
auto_ptr<Employee> p(new Employee);
in >> *p;
if (in.fail())
throw EmployeeError("File input error");

return p.release();
}



Pretty Good Idea #7

n Wrap local & member heap allocations in 
an auto_ptr object
n scalars only – no arrays!

n Don’t do much else with it
n Herb Sutter, “Using auto_ptr Effectively”, CUJ, 

October 1999, pp. 63-67.



Dynamic Memory Mgt.

n new operator throws bad_alloc when 
memory is exhausted

n You can request traditional null-return 
behavior with nothrow_t version

n Or call set_new_handler to install 
your own new handler



new and Exceptions
#include <new>
#include <iostream>

int main()
{

try
{

int* p = new int;
cout << "memory allocated\n";

}
catch (bad_alloc& x)
{

cout << "memory failure: " << x.what()
<< endl;

}
}



new - Traditional Behavior
#include <new>
#include <iostream>
using namespace std;

int main()
{

int* p = new (nothrow) int;
if (p)

cout << "memory allocated\n";
else

cout << "memory failure\n";
}



What’s Wrong Here?
void StackOfInt::grow()
{

// Enlarge stack’s data store
capacity += INCREMENT;
int* newData = new int[capacity];
for (size_t i = 0; i < count; ++i)

newData[i] = data[i];
delete [] data;
data = newData;

}



An Improvement
void StackOfInt::grow()
{

// Enlarge stack’s data store
size_t newCapacity = capacity + INCREMENT;
int* newData = new int[newCapacity];
for (size_t i = 0; i < count; ++i)

newData[i] = data[i];

// Update state only when "safe" to do so
delete [] data;
data = newData;
capacity = newCapacity; // moved

}



Fundamental Principle of 
Exception Safety

n Separate operations that may throw from 
those that change state
n only change state when exceptions can no longer 

occur
n Corollary:

n Do one thing at a time (cohesion)
n why std::stack<T>::pop() returns void

n The returned copy might throw
n and the state has changed!



Rules of Exception Safety
n If you can’t handle an exception, let it propagate up 

(“Exception neutral”)
n Leave your data in a consistent state

n Use RAII to allocate resources
n Only change your state with non-throwing ops
n An object should only own one resource

n Functions should perform only one logical operation
n Destructors should never throw
n Good references:

n Sutter, Exceptional C++ and More Exceptional C++
n Abrahams, www.boost.org/more/generic_exeption_safety.html 



Really Good Idea #8

n Don’t let an exception escape from a 
destructor.

n If you see no alternative, however, make 
sure an exception isn’t pending with the 
uncaught_exception() library function, 
then proceed.
n I’ve never seen it done



#include <exception>
#include <iostream>
using namespace std;

class C
{
public:

~C()
{

if (uncaught_exception())
cout << "unwinding..\n";

else
throw 1;

}
};



int main()
{

try
{

C c;
}
catch (int&)
{

cout << "caught an int\n";
}

caught an int



try
{

C c;
throw "";

}
catch (char*)
{

cout << "caught a char*\n";
}

}

unwinding..
caught a char*



Destructors that Throw

n Are Evil
n Unfit for use in containers
n So use uncaught_exception( ) only under 

controlled (non-container) conditions


