
Understanding Java 
Threads

Chuck Allison
Utah Valley State College
C/C++ Users Journal
www.freshsources.com



Resources

nThinking in Java, 3rd Edition, Eckel
nThe Java Prog. Lang, 3rd Ed., Arnold+
n Java Threads, 2nd Ed., Oaks & Wong
nEffective Java, Bloch
nTaming Java Threads, Holub
nConcurrent Prog. in Java, 2nd Ed., Lea



The Benefits of Threads

n Effectively use system resources
n threads run in a single process (no IPC)
n share same address space (caveat!)

n Concurrent programming
n independent tasks can run independently

n from your code’s point of view
n good design
n enables true parallelism on MP machines
n responsive user interfaces



The Challenges of Threads

nTricky to program correctly!
nMust synchronize access to shared data

n Competition Synchronization
n Prevent simultaneous access to data

n Cooperation Synchronization
n Allow threads to work together

nMust prevent deadlock
n can easily occur when sharing multiple 

resources



The Java Threading Model

nSimple, High-level approach
nProvides:

n a Thread class
n and a Runnable interface

n simple locks for synchronizing access to 
code

n inter-thread communication



What is a Thread?

nA path of execution in a program
n shares CPU(s) with other threads
n keeps sufficient context for swapping

n java.lang.Thread class
n override run( ) method
n call thread.start( )
n terminates when your run( ) returns



// Illustrates Independent Threads
class MyThread extends Thread
{

private int count;
public MyThread(String name, int count)
{

super(name); // Optional thread name
this.count = count;

}
public void run()
{

for (int i = 0; i < count; ++i)
System.out.println(getName());

}
}

A First Example



public class Independent
{

public static void main(String[] args)
{

Thread t1 = new MyThread("DessertTopping", 8);
Thread t2 = new MyThread("FloorWax", 4);
t1.start();
t2.start();

}
}

Note: There are 3 threads in this example – the main thread 
launched by the JVM, and the other two launched inside main( ).

Main Program (launches 2 threads)



DessertTopping
DessertTopping
DessertTopping
FloorWax
DessertTopping
FloorWax
DessertTopping
FloorWax
DessertTopping
FloorWax
DessertTopping
DessertTopping

Output
(Dependent on platform and environment - YMMV)



Blocking I/O

n Note that the calls to println( ) run 
uninterrupted

n I/O is a blocking operation
n The thread waits until it completes
n Other threads may run, but the I/O will be 

undisturbed
n Reason: I/O is coarse-grained native code

n JDK 1.4 java.nio provides non-blocking I/O
n Buffers, channels, selectors, for more fine-

grained control
n One thread can manage multiple connections



Thread State
n New

n after creation but before start( )
n Alive

n Runnable
n running or swapped out by scheduler

n Blocked
n sleeping
n waiting for I/O, a lock, a notify, or a join

n Dead
n run( ) has returned, or
n an uncaught exception occurred



Thread State

New

Runnable

Dead

Blocked

yield()

start() run() returns

wait()
join()
sleep()
I/O

notify()
finish
timeout
finish



Interleaved I/O with print( )
class MyThread extends Thread
{

// <snip>
public void run()
{

for (int i = 0; i < count; ++i)
{

display(); // Replaces println()
}

}
void display()
{

String s = getName();
for (int i = 0; i < s.length(); ++i)

System.out.print(s.charAt(i));
System.out.println();

}
}



Output (interleaved – oops!)

DessertTopping
DFloorWax
FloorWax
FloorWax
FloorWessertTopping
Desax
sertTopping
DessertTopping
DessertTopping
DessertTopping
DessertTopping
DessertTopping



Typical java.lang.Thread Methods
n start( )
n sleep( ) (static – for current thread)

n for a given time; let’s other threads run
n join( )

n waits for another thread to complete
n yield( ) (static – for current thread)

n let’s threads of equal or higher priority run (a hint)
n interrupt( )

n set’s a flag in a thread object
n isAlive( )
n isInterrupted( )
n interrupted( ) (static – for current thread)



From Effective Java

n “The only use that most programmers 
will ever have for Thread.yield is to 
artificially increase the concurrency of a 
program during testing.”



// Illustrates Thread.sleep()
class MyThread extends Thread
{

private int delay;
private int count;
public MyThread(String name, int delay, int count)
{

super(name);
this.delay = delay;
this.count = count;

}
public void run()
{

for (int i = 0; i < count; ++i)
{

try
{

Thread.sleep(delay);
System.out.println(getName());

}
catch (InterruptedException x)
{}

}
}

}



class Independent2
{

public static void main(String[] args)
{

Thread t1 = new MyThread("DessertTopping",
100, 8);

Thread t2 = new MyThread("FloorWax", 50, 4);
t1.start();
t2.start();

}
}



FloorWax
DessertTopping
FloorWax
FloorWax
DessertTopping
FloorWax
DessertTopping
DessertTopping
DessertTopping
DessertTopping
DessertTopping
DessertTopping

Output



Thread Priority
n Threads receive a priority equal to their 

creating thread
n Thread.setPriority( )

n Priority levels 1 through 10
n Use Thread.MAX_PRIORITY (10), 

Thread.MIN_PRIORITY (1), 
Thread.NORM_PRIORITY (5; the default)

n Doesn’t map well to native priorities
n NT has 7, Solaris 231
n Platform-dependent behavior

n Only guarantee: threads with higher priorities 
tend to run more often than others



class Priority
{
public static void main(String[] args)
{
Thread t1 = new MyThread("DessertTopping", 500);
Thread t2 = new MyThread("FloorWax", 500);
t2.setPriority(Thread.MAX_PRIORITY);
t1.start();
t2.start();

}
}

Thread Priority Example



Output (compressed)
FloorWax (126)
DessertTopping (1)
FloorWax (70)
DessertTopping (1)
FloorWax (49)
DessertTopping (1)
FloorWax (119)
DessertTopping (1)
FloorWax (5)
DessertTopping (1)
FloorWax (1)
DessertTopping (1)
FloorWax (124)
DessertTopping (1)
FloorWax (6)
DessertTopping (493)



The Runnable Interface

nAlternative to extending 
java.lang.Thread

nDeclares a run( ) method
n2 virtues:

n Separates task from thread objects
n Leaves you free to extend another class

n Java only supports single inheritance
nThread has a constructor that takes a 

Runnable object



// Illustrates a Runnable Object
class MyTask implements Runnable
{

private int delay;
private int count;
private String name;
public MyTask(String name, int delay, int count)
{

this.delay = delay;
this.count = count;
this.name = name;

}
public void run()
{

for (int i = 0; i < count; ++i)
{

try
{

Thread.sleep(delay);
System.out.println(name);

}
catch (InterruptedException x)
{}

}
}

}



class Independent4
{

public static void main(String[] args)
{

Thread t1 = new Thread(
new MyTask("DessertTopping", 100, 8));

Thread t2 = new Thread(
new MyTask("FloorWax", 200, 4));

t1.start();
t2.start();

}
}

The Main Program



Making any Class a Concurrent Task

nYet another design alternative
nUse an anonymous inner class

n Extends java.lang.Thread
n Has a run() that calls your entry point

nAdd a “start” method to create and start 
the thread

n (See next slide…)



// Illustrates an anonymous "starter" nested class
class MyTask {

private int delay;
private int count;
private String name;
public MyTask(String name, int delay, int count) {

this.delay = delay;
this.count = count;
this.name = name;

}
public void start() { // The new method

new Thread() {
public void run() {doit();}

}.start();
}
private void doit() { // The entry point

for (int i = 0; i < count; ++i) {
try {

Thread.sleep(delay);
System.out.println(name);

}
catch (InterruptedException x) {}

}
}}



public class Anonymous
{

public static void main(String[] args)
{

MyTask t1 = new MyTask("DessertTopping", 100, 8);
MyTask t2 = new MyTask("FloorWax", 200, 4);
t1.start();
t2.start();

}
}



Responsive UIs

n User perceives multiple, simultaneous 
actions

n User may want to cancel a task prematurely
n e.g., to cancel a time-consuming operation

n “Counter” example
n Displays count until “interrupted”

n Not necessarily interrupted “immediately”



// Stops a task (not entirely safe!)
import java.io.*;

class Counter implements Runnable
{

private int count = 0;
private boolean cancelled = false;

public void run()
{

while (!cancelled)
{

System.out.println(count++);
try
{

Thread.sleep(1000);
}
catch (InterruptedException x){}

}
System.out.println("Counter Finished");

}
void cancel()
{

cancelled = true;
}

}



class Cancel
{

public static void main(String[] args) {
System.out.println("Press Enter to Cancel:");
Counter c = new Counter();
Thread t = new Thread(c);
// Worker thread
t.setPriority(Thread.NORM_PRIORITY-1); // typical
t.start();

try {
System.in.read(); // Wait for Enter keypress

}
catch (IOException x) {

System.out.println(x);
}
c.cancel();      // Don't forget this!
System.out.println("Exiting main");

}
}

Stopping a Thread



Output

Press Enter to Cancel:
0
1
2

Exiting main
Counter Finished



Did You Notice?

nNotice that main( ) finished before 
Counter.run( ) did

nThe JVM runs until all user threads 
terminate



Thread Types

nUser Threads
n The default
n Run until completion

nDaemon Threads (“DEE-mun”)
n JVM doesn’t care about them
n They die after the last user thread dies

n Then the JVM halts



// cancel() not needed
import java.io.*;

class Counter implements Runnable
{

private int count = 0;

public void run()
{

for (;;)
{

System.out.println(count++);
try
{

Thread.sleep(1000);
}
catch (InterruptedException x){}

}
}

}

A Daemon Counter



class Cancel2
{

public static void main(String[] args)
{

System.out.println("Press Enter to Cancel:");
Counter c = new Counter();
Thread t = new Thread(c);
t.setDaemon(true); // ß
t.start();

try {
System.in.read();

}
catch (IOException x) {

System.out.println(x);
}
System.out.println("Exiting main");

}
}

Setting a Daemon Thread



Press Enter to Cancel:
0
1
2

Exiting main

Output
(Daemon dies an unnatural death)



Interrupting a Thread

n Thread.interrupt( )
n Gets a thread’s attention

n Sets a flag in the thread
n Thread.interrupted( ) (static, current thread)

n Clears interrupted status
n Thread.isInterrupted( ) (non-static)

n Doesn’t clear interrupted status
n InterruptedException may occur:

n If interrupted during a sleep(), wait(), or 
join() (and flag is cleared)

n Often used for asking a thread to quit



// Interrupts a thread
import java.io.*;

class Counter extends Thread
{

private int count = 0;

public void run()
{

while (!interrupted())
{

System.out.println(count++);
try
{

Thread.sleep(1000);
}
catch (InterruptedException x)
{

interrupt();  // recover interruption
}

}
System.out.println("Counter Finished");

}
}



class Interrupt
{

public static void main(String[] args)
{

System.out.println("Press Enter to Cancel:");
Counter c = new Counter();
c.start();

try
{

System.in.read();
}
catch (IOException x)
{

System.out.println(x);
}
c.interrupt();
System.out.println("Exiting main");

}
}



Press Enter to Cancel:
0
1
2

Exiting main
Counter Finished

Output



Sharing Resources

n Two threads could contend for the same 
resource
n Race condition

n Access could be interleaved, leaving data in 
an inconsistent state

n Solution: critical sections
n Only one thread allowed in at a time
n Allowed to “finish” before another thread gets 

a chance at the same code



Locks and Monitors
n Every object has a hidden lock object

n Used to protect code blocks
n Monitor concept

n Only allows one thread in at a time
n Thread acquires a lock via some object
n Other related threads wait until lock is 

released
n Applies to all guarded methods for that object 

only
n Achieved with the synchronized keyword

n Protects code (not data directly)
n Make data private!



synchronized void f()
{

<protected code>
}

is the same as the following pseudocode…
void f() {

this.lock.acquire();
try
{

<protected code>
}
finally
{

this.lock.release();
}

}

How synchronized Works
(conceptually)



Library Example

nCheck-out system
n Usually solved by database locks, but 

humor me
nBook class
nMust only allow one thread access to 

check-out check-in code
nSynchronized methods



// Illustrates synchronized methods

class Book
{

private final String title;
private final String author;
private String borrower;

public Book(String title, String author)
{

this.title = title;
this.author = author;
borrower = null;

}

public synchronized boolean
checkOut(String borrower)
{

if (isAvailable())
{

this.borrower = borrower;
return true;

}
else

return false;
}



public synchronized boolean checkIn()
{

if (!isAvailable())
{

borrower = null;
return true;

}
else

return false;
}

public String getTitle()
{

return title;
}

public String getAuthor()
{

return author;
}



public synchronized boolean isAvailable()
{

return borrower == null;
}

public synchronized String getBorrower()
{

return borrower;
}

}



Principles

nAlways make data private
nAlways protect access to shared data 

with a monitor (i.e., using synchronized)
nSynchronize as little code as possible

n Blocks instead of entire methods:
n {… synchronized (obj) {…} … }



Synchronizing Static Methods

nSame syntax
nThread obtains lock from the class

object



// Prevents interleaving via a monitor
class MyThread extends Thread
{

private int delay;
private int count;
public MyThread(String name, int delay, int count)
{

super(name); // Optional thread name
this.delay = delay;
this.count = count;

}
public void run()
{

for (int i = 0; i < count; ++i)
{

try
{

Thread.sleep(delay);
display(getName());

}
catch (InterruptedException x)
{

// Won't happen in this example
}

}
}    



synchronized static void display(String s) // <-
{

for (int i = 0; i < s.length(); ++i)
System.out.print(s.charAt(i));

System.out.println();
}

}

class StaticLock
{

public static void main(String[] args)
{

Thread t1 = new MyThread("DessertTopping",
100, 8);

Thread t2 = new MyThread("FloorWax", 200, 4);
t1.start();
t2.start();

}
}



DessertTopping
FloorWax
DessertTopping
DessertTopping
FloorWax
DessertTopping
DessertTopping
FloorWax
DessertTopping
DessertTopping
FloorWax
DessertTopping

Output (not interleaved)



From Effective Java
n “Whenever multiple threads share mutable data, 

each thread that reads or writes the data must 
obtain a lock.”

n “Do not let the guarantee of atomic reads and 
writes deter you from performing proper 
synchronization.”

n “The use of the volatile modifier … is an 
advanced technique… the extent of its 
applicability will not be known until the ongoing 
work on the memory model is complete.”

n “As a rule … do as little work as possible inside 
synchronized regions.”



New in JDK 1.4

n The holdsLock( ) Method
n Used with assertions (also new in 1.4)
n For safety

n asserting that a lock is or isn’t held
n For efficiency

n Calling a synchronized method that you 
already have a lock on still has a cost

n If a method will only be called in a monitor, 
don’t synchronize it, just assert that the thread 
holds the lock



holdsLock( ) Example
(courtesy Allen Holub)

public synchronized void f()
{  //...

workhorse();
//...

}

private /* not synchronized */ void workhorse()
{  assert Thread.holdsLock(this) : "Improper call";

//...
}

// Fires assertion:        
protected void g(){ workhorse(); }



Deadlock

nWhen multiple threads wait on each 
other forever

nCan easily occur when multiple 
resources are shared
n Suppose threads X and Y both need 

resources A and B
n If X has A and is waiting for B, and Y 

has B and is waiting for A, Big Trouble!



Managing Multiple Resources

nTechniques to prevent deadlock:
n Fixed locking order
n Try-and-back-off



Fixed Locking Order

nAll tasks obtain locks for the resources 
in the same order, and release them 
LIFO

nNot always possible
n Only works if all threads must share the 

same, fixed set of resources
n Dining Philosophers can’t be solved this 

way



Try-and-back-off

n See if all the locks are available, locking each 
one as you go
n Order not as crucial with this technique

n If a lock is unavailable, back out all locks and 
start all over

n More expensive
n Requires a “try-lock” method

n Tells whether an object’s lock is in use
n Java doesn’t have one

n But it will!



class Resources {
static Integer A = new Integer(1);
static Integer B = new Integer(2);

}

class X extends Thread {
public void run()
{

for (int i = 0; i < 10; ++i) {
synchronized(Resources.A) {

synchronized(Resources.B) {
System.out.println("X in process");
try {

Thread.sleep(1000);
}
catch (InterruptedException x) {
}

}
}

}
}

}



class Y extends Thread
{

public void run()
{

for (int i = 0; i < 10; ++i) {
synchronized(Resources.B) { // oops!

synchronized(Resources.A) { // oops!
System.out.println("Y in process");
try {

Thread.sleep(100);
}
catch (InterruptedException x) {
}

}
}

}
}

}
class Deadlock {

public static void main(String[] args) {
(new X()).start();
(new Y()).start();

}
}



The Dining Philosophers

nn philosophers seated at a round table
n1 chopstick between each (n total)
nSpend their time eating or thinking
nTo eat, must obtain both right and left 

chopstick
nTry-and-back-off works

n Using Win32 WaitForMultipleObjects
nHow to solve in Java?



Avoiding Chopstick Wars

nMust prevent circular waiting
n If every philosopher tried for Left 

chopstick, then Right, deadlock would 
occur quickly

n Instead, have all but 1 philosopher use 
the Left-Right sequence

n Have 1 use Right-left to break the cycle
nExample from Thinking in Java, 3rd Ed.

n DiningPhilosophers.java



Inter-Thread Communication

n Allows threads to cooperatively solve a 
problem

n One threads waits for a condition to occur
n To be “notified” by another thread

n The thread that causes the condition notifies 
other threads, so they can proceed
n The notify-ees still have to compete for CPU 

time
n Typical in producer-consumer cases



Methods for Inter-Thread 
Communication
n Object.wait( )

n Thread blocks until it is notified
n And releases its lock

n Optional timeout argument
n Object.notify( )

n Another thread is awakened arbitrarily
n The notifying thread must release the lock

n Object.notifyAll( )
n All threads waiting on the lock awaken

n Must run in a monitor!



Object.wait( )

nEquivalent (sort of) to:
this.lock.release();
this.condition.wait_for_true();
this.lock.acquire();

nMust check condition in a loop
n A loop that calls wait( )
n You could get notified on a different 

condition
n Or another thread might immediately 

invalidate the condition



Object.notify vs. Object.notifyAll

n You usually use notifyAll( )
n Wakes up all waiting threads in the wait queue 

for the lock
n They compete for CPU, and check the 

condition
n Always use if there are multiple conditions
n Analogous to the Observer Design Pattern

n Use notify( ) only if
n Threads are waiting on the same condition
n Only one thread should respond to the 

condition



A Producer-Consumer Example

nProducer threads populate a shared 
queue
n Call notify after inserting an element

nConsumer threads remove queue 
elements
n Wait until queue has something in it

nAccess to queue must be synchronized
n Threads synchronize on queue object



aProducer

aProducer

theQueue

aConsumer

aConsumer

produce

produce provide

provide



import java.util.*;

class Queue
{

// The shared buffer:
static Queue store = new Queue();

private LinkedList data = new LinkedList();

public void put(Object o)
{

data.addFirst(o);
}
public Object get()
{

return data.removeLast();
}
public int size()
{

return data.size();
}

}



class Producer extends Thread
{

static Random numbers = new Random();
Producer(String id) {

super(id);
}
public void run() {

// Generate some elements for the Queue
for (;;) {

int number = numbers.nextInt(1000);
System.out.println(getName() + " producing "

+ number);
synchronized(Queue.store) {

Queue.store.put(new Integer(number));
Queue.store.notify();

} // Give up lock!
}

}
}



class Consumer extends Thread
{

Consumer(String id) {
super(id);

}
public void run() {

for (;;) {
synchronized(Queue.store) {

while (Queue.store.size() == 0)
{

try {
Queue.store.wait();

}
catch (InterruptedException x) {

interrupt();
}

}
System.out.println(getName() +

" consuming " + Queue.store.get());
}

}
}

}



class CommTest
{

public static void main(String[] args)
throws InterruptedException

{
// Start Producers
new Producer("Producer1").start();
new Producer("Producer2").start();

// Start Consumers
new Consumer("Consumer1").start();
new Consumer("Consumer2").start();

}
}



/* Output:
Producer1 producing 289
Producer1 producing 34
Producer1 producing 975
Producer1 producing 804
Producer1 producing 913
Producer1 producing 514
Producer1 producing 94
Producer1 producing 425
Producer2 producing 863
Consumer1 consuming 289
Consumer2 consuming 34
Producer2 producing 758
Consumer1 consuming 975
Consumer2 consuming 804
Producer2 producing 274
Consumer1 consuming 913
Consumer2 consuming 514
Producer2 producing 311
Consumer1 consuming 94
Consumer2 consuming 863
Producer2 producing 997
(etc...)
*/



A Better Solution

nThe previous example doesn’t halt!
nSuppose we terminate Producers

n After a certain number of inserts, say
nHow can the Consumers detect that all 

the Producers are finished?
nNeed an independent object

n Tracks the number of active Producers
n Consumers halt when reaches zero



import java.util.*;

class Counter
{

private int count;

public Counter()
{

count = 0;
}
public synchronized void increment()
{

++count;
}
public synchronized void decrement()
{

--count;
}
public synchronized int get()
{

return count;
}

}



class Producer extends Thread
{

private static Random numbers = new Random();
private Counter counter;

Producer(String id, Counter counter) {
super(id);
this.counter = counter;

}
public void run() {

counter.increment(); // ß

// Generate some elements for the Queue
for (int i = 0; i < 8; ++i) {

int number = numbers.nextInt(1000);
System.out.println(getName() +

" producing " + number);
synchronized(Queue.store) {

Queue.store.put(new Integer(number));
Queue.store.notify();

}
}



synchronized(Queue.store) {
// Prevent infinite loop
// (because there are multiple consumers)
counter.decrement();
Queue.store.notifyAll(); // ß

}
System.out.println("\t" + getName() +

" finished");
}

}

class Consumer extends Thread
{

private Counter counter;

Consumer(String id, Counter counter)
{

super(id);
this.counter = counter;

}



public void run()
{

for (;;) {
synchronized(Queue.store) {

while (Queue.store.size() == 0) {
if (counter.get() == 0) {

// Producers done and queue is empty
System.out.println("\t" + getName()

+ " terminating");
return;

}
try {

Queue.store.wait();
}
catch (InterruptedException x) {}

}
System.out.println(getName() + " consuming "

+ Queue.store.get());
}

}
}

}



class CommTest2
{

public static void main(String[] args)
{

// Start Producers
Counter counter = new Counter();
new Producer("Producer1", counter).start();
new Producer("Producer2", counter).start();

// Start Consumers
new Consumer("Consumer1", counter).start();
new Consumer("Consumer2", counter).start();

}
}

/* Output:
Producer1 producing 386
Producer1 producing 240
Producer1 producing 982
Producer1 producing 453
Producer1 producing 878
Producer1 producing 228
Producer1 producing 245
…



…
Consumer1 consuming 189
Consumer2 consuming 740
Producer2 producing 761
Consumer1 consuming 264
Consumer2 consuming 686
Producer2 producing 586
Consumer1 consuming 761
Producer2 producing 847
Consumer1 consuming 586
Producer2 producing 161
Consumer1 consuming 847
Consumer1 consuming 161

Producer2 finished
Consumer1 consuming 245
Producer1 producing 329
Consumer2 consuming 329

Consumer1 terminating
Consumer2 terminating
Producer1 finished

*/



Things to Remember

nEvery wait( ) needs a notify
nCall notifyAll( ) if more than one thread 

needs to be notified
nAlways use condition loops



Thread Groups and Exceptions

n Exceptions belong to a Thread
n Both are stack-based

nWhen an exception occurs in a monitor, 
the lock is released
n Duh!

nWhen an exception is not caught:
n It falls off the top of the stack
n It has no where to go



Uncaught Exceptions

nThe current thread dies
nThreadGroup.uncaughtException( ) is 

called
n Default behavior is to print stack trace to 

System.err
n You can override it

n That’s why you would create a new 
ThreadGroup

n Otherwise thread groups are useless!!



class MyThread extends Thread
{

public void run()
{

System.out.println("Throwing in " +
"MyThread");

throw new RuntimeException();
}

}

An Uncaught Exception



class Uncaught
{

public static void main(String[] args)
{

MyThread t = new MyThread();
try
{

t.start();
Thread.sleep(1000);

}
catch (Exception x)
{

System.out.println("This won't happen");
}
System.out.println("Exiting main");

}
}

/* Output:
Throwing in MyThread
java.lang.RuntimeException

at MyThread.run(Uncaught.java:7)
Exiting main
*/



Using Thread Groups

nExtend ThreadGroup
nOverride uncaughtException( )
nPlace thread in group

n By using appropriate constructor



// Join a thread group
class MyThread extends Thread
{

public MyThread(ThreadGroup g, String name)
{

super(g, name);
}
public void run()
{

System.out.println("Throwing in " + "MyThread");
throw new RuntimeException();

}
}



class MyGroup extends ThreadGroup
{ 

public MyGroup(String name)
{

super(name);
}
public void uncaughtException(Thread t,

Throwable x)
{

System.out.println(t + " aborted with a " + x);
}

}

Overriding uncaughtException( )



class Uncaught2
{

public static void main(String[] args)
{

MyGroup g = new MyGroup("My Thread Group");
MyThread t = new MyThread(g, "My Thread");
try {

t.start();
Thread.sleep(1000); 

}
catch (Exception x) {

System.out.println("This won't happen");
}
System.out.println("Exiting main");

}
}

/* Output:
Throwing in MyThread
Thread[My Thread,5,My Thread Group] aborted with a
java.lang.RuntimeException
Exiting main
*/



Finis, El Fin, O Fim, 
The End


