
CODING FOR KEEPS
How to Write a Function

Chuck Allison
Better Software, June 2011

(slides available at freshsources.com/bs)

Functions
• Are the verbs of computing

•  The “life” of objects

•  They encapsulate algorithms

• Are a low-level currency for reuse
•  the “pocket change”
•  Classes are “dollars”
•  Modules are “mutual funds” :-)

A Well-Designed Function is…
• Easier to implement

• Easier to test

• Easier to read

• Easier to maintain

• Easier to reuse

• A key component of quality software

Objectives for Today
• Appreciate the principles of good function design

•  writing cohesive functions
•  programming at a higher level

• Be familiar with the different kinds of function

architectures available in modern programing languages
•  anonymous functions
•  delegates (aka “closures”)
•  generators and coroutines
•  pure functions

Agenda

•  Fundamentals of Function Design

•  Functions as First-Class Objects

• Polymorphic Functions

• Resource-Friendly Functions

• Parameter Passing Techniques (as time allows)

Along the Way We Will See…
• Higher-order and Anonymous Functions

• Nested functions, Closures and Delegates

• Generators and Coroutines

• Contract Programming

•  Functions as Transactions

• Examples will be in C++ (2011), Python, and D (2.x)

What We’ve Heard

“Solutions should be as simple as
possible, but no simpler”

-- Albert Einstein?

What Einstein Really Said

“It can scarcely be denied that the supreme goal of all
theory is to make the irreducible basic elements as
simple and as few as possible without having to
surrender the adequate representation of a single
datum of experience.”

• Philosophy of Science, Vol. 1, No. 2 (April 1934), p. 165.

What We Should Also Remember

“Functions should be as simple as
possible, but no simpler”

FUNCTION DESIGN
Fundamentals

Fundamentals of Function Design

• A function should be as self-contained as possible
•  it does its one job but no more; no extraneous code

• Black-box Model of a Function:

• Dependencies on external objects should be minimal
•  Preferably only through parameters and return values

Process
Input Output

Functions vs. Procedures

• Side Effects!
•  changes other than in return values

• Procedures change non-local state
•  behind the caller’s back

• We routinely do this with objects and methods
•  Complex objects are hard to debug
•  Getters and Setters are usually Problematic

Suspicious Types of Coupling

• Access to variables in other scopes
•  global variables
•  other non-local variables, e.g. via reference parameters

• Access to functions inside other scopes

• Access to types inside other scopes

• All these dependencies can complicate software

Case Study: String Tokenizing
• Consider C’s strtok function

•  char* strtok(char* search, const char* break);

•  The string, search, is traversed and modified
•  characters in break are skipped
•  a ‘\0’ (NUL) replaces the first break character after the token
•  it remembers where it left off for subsequent calls
•  the position of the first non-break character is returned

• Note: strtok must be called in 2 different ways

strtok Example

int main() {
 char search[BUFSIZ];
 strcpy(search,"This is 1just2a3test#.");
 char brkset[] = " \t\n\r\f\v`~!@#$%^&*()-_=+;:'\",<.>/”
 "?01234567890";
 char* tokenptr = strtok(search,brkset);
 while (tokenptr != 0) {
 cout << tokenptr << endl;
 tokenptr = strtok(0,brkset);
 }
}

This
is
just
a
test

This\0is 1just2a3test#.
This\0is\01just2a3test#.
This\0is\01just\0a3test#.
This\0is\01just\0a\0test#.
This\0is\01just\0a\0test\0#.

The Dependencies of strtok

• What “wrong” here?

Caller strtok Static Data

modies

modies

What’s “Wrong” with strtok?
•  It modifies the original search string

•  a side effect!

•  It keeps static data
•  another side effect!
•  shared among all calls to strtok
•  calls from independent clients can’t be interleaved

• Different calls to strtok have different semantics
•  when you pass 0 (NULL), it picks up where it left off
•  it is essentially 2 different functions

An Improved Tokenizer

• Will not modify the caller’s data
•  but how can we keep track of where we are?

• Will not use shared (static) data to track its state
•  but where will it put it?

• Will separate initialization from iteration
•  different calls for different actions
•  so we will need more that one function!

Another Try at strtok
struct Tokenizer {
 const char* search;
 const char* brkset;
 int pos;
};

Tokenizer* init_tok(const char* s, const char* brkset);

string next_token(Tokenizer* tok);

void del_tok(Tokenizer* tok);

Code is available in strtok2.cpp if you want to see it.

Using Tokenizer

int main() {
 char search[BUFSIZ];
 strcpy(search,"This is 1just2a3test#.");
 char brkset[] = " \t\n\r\f\v`~!@#$%^&*()-_”
 "=+;:'\",<.>/?01234567890";
 Tokenizer* tok = init_tok(search,brkset);
 string word = next_token(tok);
 while (!word.empty()) {
 cout << word << endl;
 word = next_token(tok);
 }
 del_tok(tok);
}

The Dependencies of Tokenizer

Using a class would be better
of course (see strtok3.cpp)

Caller next_token Heap Data

del_tok

init_tok
But the data is
“self-contained”

Reentrant Functions

•  The problem with threads: race conditions on shared data
•  Using critical sections for shared data is a topic for another day

•  strtok is not thread-safe:
•  it uses static data which is shared by its very nature
•  but each thread needs its own copy; FAIL

•  Thread-safe functions must be reentrant
•  they “start from scratch” on each call;
•  no external data; no state saved between calls

Generators

• Generators are special functions that:
•  save state between calls (in each function activation)
•  pick up where they left off when resumed
•  like iterators do

• No need for us to manage the state at all

• Python supports generators:
•  and they can be easily simulated with iterators in other languages

A Tokenizer Generator
def tokenizer(s,brkset):
 pos = 0
 while pos < len(s):
 # Skip break characters
 start = pos
 while start < len(s) and s[start] in brkset:
 start += 1
 if start == len(s): raise StopIteration

 # Find next break character
 stop = start
 while stop < len(s) and s[stop] not in brkset:
 stop += 1
 pos = stop
 yield s[start:stop] # ç

search = "This is 1just2a3test#."
brkset = " \t\n\r\f\v`~!@#$%^&*()-_=+;:'\",<.>/?01234567890"
for word in tokenizer(search,brkset):
 print word

A Numeric Example
• Classic algorithm for sqrt(x):

•  start with an initial guess, g1

•  compute next guess as:
•  g2 = ½ (g1 + x/g1)

•  continue until the difference between guesses is “small”

def mysqrt(x,g1,tol):
 g2 = (g1 + x/g1)/2.0
 while abs(g2 - g1) > tol:
 g1 = g2
 g2 = (g1 + x/g1)/2.0
 return g2

Is There Room for Improvement?

• Depends…

•  There is no coupling to non-local data ✔
•  There is no shared data ✔

• Hmmm. Maybe it’s “perfect”

There are 2 Things At Play in mysqrt

•  1) Generating the next guess

•  2) Checking a condition governing the iteration

• Can these be separated?

• And why would we want to separate them?

Loosening the Coupling

•  Iterating until a stopping condition is obtained is a very
common operation

•  Let’s feed the sequence of guesses to a generic iteration
procedure
•  generators make that easy

•  Thus we will loosen the coupling between the two actions
•  by making the sequence a parameter to the iteration

The Sequence Generator

• An unbounded sequence

def sqrt_seq(x,g):
 yield g
 while True:
 g = (g + x/g) / 2.0
 yield g

The Iteration Procedure

•  It decides when to quit

def iterate(seq, tol):
 last = seq.next()
 current = seq.next()
 while (abs(current-last) > tol):
 last = current
 current = seq.next()
 return current

Using the New Arrangement

• We can now reuse iterate on any sequence!
•  (sqrt.cpp has a C++ version)

def mysqrt(x,g1,tol):
 return iterate(sqrt_seq(x,g1),tol)

print mysqrt(2.0,1.0,.001)

Coupling Guidelines

• Eliminate unnecessary dependencies

• Minimize and localize the number of necessary
dependencies

• Strive to only communicate through interfaces

• Minimize (or eliminate) shared data

• Minimize the number of parameters in an interface

Maxim

• “As little coupling as possible, but no less.”

Cohesion

• A measure of integrity
•  “the task, the whole task, and nothing but the task”

•  Functions that are cohesive perform a single, well-defined
(logical) task

•  There is an inverse relationship between cohesion and
coupling
•  if we think cohesion, coupling will take care of itself!

Coroutines

• A coroutine, like a generator, can be paused and resumed
•  multiple entry and exit points
•  ideal for cooperating procedures and simulations

• Coroutines can also receive input when they resume
•  Coroutines support cooperative multitasking (aka “Green Threads”)

•  Functions and procedures are special cases of coroutines
•  they have only one entry point
•  data is only received at the time of call

Coroutine Example
Write a coroutine named changes that receives numbers one at a time from
clients (via send) and returns a list of the (zero-based) positions where changes
in sign are detected as they are encountered. Positive numbers, negative
numbers, and zero are considered of “different signs”. The number of inputs is
unbounded. An example:

f = changes()
f.next() # Returns [] (ignored)
nums = [1,2,0,1,-1,-2,3]
for n in nums:
 print f.send(n)

Output:
[]
[]
[2]
[2, 3]
[2, 3, 4]
[2, 3, 4]
[2, 3, 4, 6]

The Coroutine changes

def changes():
def sign(n):
 return -1 if n < 0 else 1 if n > 0 else 0

result = []
last = (yield result) # output/input
index = 0
while True:
 curr = (yield result) # output/input
 index += 1
 if sign(last) != sign(curr):
 result.append(index)
 last = curr

Optional Interlude

•  If time and interest allow:
•  look at a /*…*/ comment extractor coroutine
•  file c_comment.py

Nested Functions

• Python and D support nested function definitions
•  sign is nested inside changes on 2 slides back

• What is a possible advantage for this?

Minimal Scoping

•  Identifiers should have the smallest scope possible

• Reduced visibility promotes reduced coupling

• Will see more in the next section…

Functions and Reuse

• We’ve seen that function reuse can result from a
separation of concerns
•  when we separated iterate from mysqrt

• Reusable Code is:

•  generic (specialized by parameters)
•  encapsulated (few external dependencies)
•  flexible (can be customized by more than just data parameters)

• Minimal coupling/Maximal Cohesion ➟ Reusability

FUNCTIONS AS FIRST-
CLASS OBJECTS

Parameterizing the Break Set

•  Let’s enhance our tokenizer
•  allow users to specify the set of break characters
•  by passing a function to the tokenizer

•  This allows maximum flexibility in specifying what
unacceptable characters are
•  computations are more generic than sets of data
•  e.g., they can use if-else logic for more complex conditions

Using a Break-Set Function
def tokenizer(s,brkf):
 pos = 0
 while pos < len(s):
 # Skip break characters
 start = pos
 while start < len(s) and brkf(s[start]):
 start += 1
 if start == len(s): raise StopIteration

 # Find next break character
 stop = start
 while stop < len(s) and not brkf(s[stop]):
 stop += 1
 pos = stop
 yield s[start:stop]

Using the New Tokenizer
search = "This is 1just2a3test#."

def badchars(c):
 return not c.isalpha()

for word in tokenizer(search,badchars):
 print word

This
is
just
a
test

Being More Direct
• Why not specify the desired characters directly?

def tokenizer(s,accept):
 pos = 0
 while pos < len(s):
 # Skip break characters
 start = pos
 while start < len(s) and not accept(s[start]):
 start += 1
 if start == len(s): raise StopIteration

 # Find next break character
 stop = start
 while stop < len(s) and accept(s[stop]):
 stop += 1
 pos = stop
 yield s[start:stop]

Being More Direct (cont.)
search = "This isn’t 1just2a3test#."

def goodchars(c):
 return c.isalpha() or c == "'"

for word in tokenizer(search,goodchars):
 print word

This
isn’t
just
a
test

Higher-Order Functions

• A Higher-Order Function:
•  accepts functions as parameters, and/or
•  returns a function as a result

•  tokenizer is a higher-order function
•  C++, C#, and D support this with function objects
•  C# and D also support this with delegates

•  Functions in some languages are first-class objects
•  they can be copied and created on-the-fly

sort is a Higher-Order Function
• You can customize its comparison functionality

• C++:

•  sort(start_pos, endp1_pos, comparatoropt)

• Python
•  sort(sequence, comparatoropt)

•  Java:
•  Arrays.sort(array, comparatoropt)
•  Collections.sort(list, comparatoropt)

Customizing sort in Python
Descending Order

def desc(a,b):
 return 1 if a < b else -1 if a > b else 0

stuff = [1,2,3,4,5]
stuff.sort(desc)
print stuff # [5, 4, 3, 2, 1]

Customizing sort in C++

bool desc(int a, int b) {
 return b < a;
}

int main() {
 vector<int> stuff = {1,2,3,4,5};
 sort(stuff.begin(), stuff.end(), &desc);
 for (int i: stuff)
 cout << i << ' ';
 cout << endl;
}

Anonymous Functions

•  The name desc is not important

• We can create the function on-the-fly
•  the epitome of minimal scoping

• Python, D, C++ and C# support:
•  lambda expressions
•  function objects (aka “functors”)

Using Lambda Expressions

Python:

stuff = [1,2,3,4,5]
stuff.sort(lambda a,b: 1 if a < b else -1 if a > b else 0)
print stuff # [5, 4, 3, 2, 1]

C++ 2011:

int main() {
 vector<int> stuff = {1,2,3,4,5};
 sort(stuff.begin(), stuff.end(), [](int a,int b){return a > b;});
 for (int i: stuff)
 cout << i << ' ';
 cout << endl;
}

Using a C++ Function Object

int main() {
 vector<int> stuff = {1,2,3,4,5};
 sort(stuff.begin(), stuff.end(), greater<int>());
 for (int i: stuff)
 cout << i << ' ';
 cout << endl;
}

Returning Functions as Values

•  Functions can be created and returned from inside a host
function

• Useful when parameters to the host function customize
the result function

•  The result functions can use the host function’s
environment
•  via a closure
•  a packaging of code with its referencing environment

Python Closure Example

• An “add n” function

def addn(n):
 return lambda x: x+n

add3 = addn(3)
print add3(1) # 4
print add3(2) # 5

C++ 2011 Version

#include <functional>
#include <iostream>
using namespace std;

function<int(int)> addn(int n) {
 return [=](int x){return x + n;};
}

int main() {
 auto add3 = addn(3);
 cout << add3(1) << endl; // 4
 cout << add3(2) << endl; // 5
}

D Version

import std.stdio;

auto addn(int n) {
 return (int x){return x + n;}; // a delegate
}

void main() {
 auto add3 = addn(3);
 writeln(add3(1)); // 4
 writeln(add3(2)); // 5
}

Delegates in D

• As in C#, a delegate in D can be coupled with:
•  an object (for non-static methods)
•  a class (for static methods)

•  In D, delegates can also be coupled with a function
closure
•  which is moved from the stack to the garbage-collected heap
•  like we just saw with addn

List Processing Functions

• A staple of functional programming

• Higher-level coding than using explicit loops
•  avoid creating your own function

• map (aka transform)

•  applies a function to each list element (returns a new list)
•  filter (aka copy_if)

•  collects list elements satisfying a predicate function
•  reduce (aka accumulate, foldl)

•  i.e., “reduces” the list to a computed result (sum, max, etc.)

Python List Processing Examples
urls = ["http://python.org","http://stickyminds.com",
 "http://sqe.com","http://signsoflife.me”,
 "http://uvu.edu"]

short_urls = map(lambda s: s[len("http://"):],urls)
print short_urls
dotcom = filter(lambda s: s.endswith(".com"),urls)
print dotcom
anyedu = reduce(lambda sofar,s: sofar or s.endswith(".edu"),
 urls,False)
print anyedu

''' Output:
['python.org', 'stickyminds.com', 'sqe.com', 'signsoflife.me', 'uvu.edu']
['http://stickyminds.com', 'http://sqe.com']
True
'''

short_urls in C++

 vector<string> urls = {
 "http://python.org","http://stickyminds.com",
 "http://sqe.com", "http://signsoflife.me",
 "http://uvu.edu"};

// Remove http://
vector<string> short_urls;
size_t prefix_len = strlen("http://");
transform(urls.begin(),urls.end(),back_inserter(short_urls),
 [=](string s){return s.substr(prefix_len);});
for (string s: short_urls)
 cout << s << endl;

Partial Function Application

• You can send only a subset of arguments to a function
•  leaving the rest for later
•  a new, temporary function waiting for the other args is returned
•  allows customization of functions for later reuse

•  aka “Currying”

Currying in Python

import functools

Store the accumulator function
add = functools.partial(reduce,lambda x,y:x+y)
print add([1,2,3]) # 6 (0 initializer assumed)
print add([4,5,6],100) # 115

Fix the list
add123 = functools.partial(add,[1,2,3])
print add123(0) # 6
print add123(100) # 106

A C++2011 Version

int main() {
 vector<int> nums = {1,2,3}, nums2 = {4,5,6};
 typedef vector<int>::iterator Iter;
 auto add = bind(&accumulate<Iter,int,function<int(int,int)>>,
 _1,_2,_3,plus<int>());
 cout << add(nums.begin(),nums.end(),0) << endl; // 6
 cout << add(nums2.begin(),nums2.end(),100) << endl; // 115

 auto add123 = bind(add,nums.begin(),nums.end(),_1);
 cout << add123(0) << endl; // 6
}

A D Example

void main() {
 int[] nums = [1,2,3], nums2 = [4,5,6];
 alias reduce!("a+b") add;
 writeln(add(nums)); // 6

 alias curry!(add,100) addto100;
 writeln(addto100(nums2)); // 115
}

Binding Args via Another Function
In D

int f(int a, int b, int c) {
 return a + b*c;
}

void main() {
 // Fix b = 5
 auto g = (int a, int c) {return f(a,5,c);};
 writeln(g(4,6)); // 4 + 5*6 = 34
}

Pure Functions

• Nice feature: Referential Transparency
•  whenever you call them with the same arguments, you always get

the same answer
•  assists in writing correct programs
•  no surprises via coupling to enclosing scopes

• All functions in functional languages are pure:
•  Haskell, FP subset of ML
•  Supported in D

A Pure Function Example
•  The proverbial Fibonacci Number function:

•  D ensures that the function is self-contained

pure int fib(int n) {
 if (n == 0 || n == 1)
 return n;
 int a = 1, b = 1;
 foreach (i; 2..n) {
 auto t = b;
 b += a;
 a = t;
 }
 return b;
}

POLYMORPHIC
FUNCTIONS

Polymorphism
• A function is polymorphic if at least one of its parameters

can receive arguments of different types

• Ad Hoc polymorphism (“bounded” polymorphism)
•  the permissible set of types is fixed with the function definition(s)
•  implicit conversions (aka coercions)
•  overloading

• Universal polymorphism (“unbounded”)
•  the permissible set of types is not fixed
•  generics/templates (“parametric polymorphism”)
•  method overrides (“subtype polymorphism”)

Duck Typing
• A type of parametric polymorphism found in C++

Templates, C# 4.0 and dynamically typed languages
•  Ruby, Python, Perl, PHP, etc.

•  aka “Implicit Interfaces”
•  as long as the supplied type has the expected operations, all is well
•  no need to require implementation of an explicit interface

•  like Java generics do

• Parametric Polymorphism comes “for free” in dynamic
languages

Parametric Polymorphism in Python

def h(x):
 return x + x

g calls f on x:
def g(f, x): # f must be a function
 return f(x)

print g(h,3) # 6
print g(h,'two') # twotwo
#print g(2,3) # error: 2 is not callable

A C++ Version

template<typename T>
T h(T t) {
 return t + t;
}

template<typename F, typename T>
T g(F f, T t) {
 return f(t);
}

int main() {
 cout << g(&h<int>,3) << endl; // 6
 cout << g(&h<string>,string("two")) << endl; // twotwo
}

Contract Programming
A Perspective for Polymorphic Interfaces

• Methods are contracts with users

• Users must meet pre-conditions of a method
•  what the method requires of the client

•  parameter in a certain range, for example

• Method guarantees certain post-conditions
•  but only if the pre-conditions were met

75

Parties in Contracts
Clients and Suppliers

• Clients must satisfy pre-conditions
•  Think of preconditions as the price a customer pays for a service

• Suppliers must satisfy post-conditions
•  Think of postconditions as the service provided to a customer

•  This affects inheritance…

76

Liskov Substitution Principle
• A technique for designing function overrides in a hierarchy

•  ensures correct subtype polymorphism

•  Liskov Substitution Principle:
•  “Let q(x) be a property provable about objects x of type T. Then q(y)

should be true for objects y of type S where S is a subtype of T.”
•  Derived objects should be substitutable for base objects

•  This principle must be followed when overriding functions
•  Derived classes must not change the “rules of the game”

Contracts and Inheritance
• Contracts are set by the base class interface

•  Derived classes must obey the base contract
•  Otherwise substitutability is compromised

• Pursuing the contractor-customer analogy:
•  Subcontractors must not charge more than originally agreed upon
•  Subcontractors must deliver at least what was agreed upon

• Clients program to the contract
•  By using and understanding the base class interface and its

conditions
•  And by using base/interface pointers

•  and letting polymorphism do its work invisibly

78

Sample Contract Specification

int f(x)
Base

int f(x)
Derived

precondition:
"x is an odd integer"

postcondition:
"returns an even integer"

precondition:
"x is an integer"

postcondition:
"returns 8"

(relax) (strengthen)

D Contract Implementation
Base Class
class Base {
public:
 int f(int x)
 in {
 assert(x % 2 == 1);
 }
 out (retval) {
 assert(retval % 2 == 0);
 }
 body {
 int retval = x*2;
 return retval;
 }
}

D Contract Implementation
Derived Class
class Derived : Base {
public:
 int f(int x)
 in {
 assert(is(typeof(x) : int));
 }
 out (retval) {
 assert(retval == 8);
 }
 body {
 int retval = 8;
 return retval;
 }
}

D Contract Semantics with Inheritance

• All preconditions are OR’ed together

• All postconditions are AND’ed

• Using short-circuit evaluation
•  from the top of the hierarchy down

Contract Programming
Summary

•  “The problem for instances of B is how to be perfectly
substitutable for instances of A. The only way to
guarantee type safety and substitutability is to be equally
or more liberal than A on inputs, and to be equally or more
strict than A on outputs.” – Wikipedia

•  “Require no more; Promise no less”

83

RESOURCE-FRIENDLY
FUNCTIONS

Resource Management
• Most resources are used with an acquire-release pattern

•  e.g., locks, connections, etc.

• Exceptions interrupt this flow
•  but resources still need to be released!

• Solution: automatic cleanup during stack unwinding
•  finally
•  RAII (put release code in C++ destructors or C# IDisposable

objects with using)
•  with clauses in Python
•  scope statements in D

void g() {
 risky_op1(); // May acquire resources…
 risky_op2(); // "
 risky_op3(); // "
 writeln("g succeeded");
}

Assume further that these functions must run to
completion or not at all (i.e., transactionally).

An Unsafe Function

void g() {
 risky_op1();
 try {
 risky_op2();
 }
 catch (Exception x) {
 undo_risky_op1(); // Back-out op1
 throw x; // Rethrow exception
 }
 try {
 risky_op3();
 writeln("g succeeded");
 }
 catch (Exception x) {
 // Back-out op1 and op2 in reverse order
 undo_risky_op2();
 undo_risky_op1();
 throw x;
 }
}

An Unsavory Solution

void g() {
 risky_op1();
 scope(failure) undo_risky_op1();
 risky_op2();
 scope(failure) undo_risky_op2();
 risky_op3();
 writeln("g succeeded");
}

D’s scope Statement

A LIFO Transaction!

PARAMETER PASSING
TECHNIQUES

Many Ways To Pass a Parameter
• More than we need!

•  1) by value (“copy in”; in)
•  2) by result (“copy out”; out)
•  3) by value-result (“copy in–copy out”; inout or in out)
•  4) by reference (ref, & in C++)
•  5) by object reference (Java, C#, D)
•  6) by name (weird relic from lambda calculus)
•  7) by need (by name “done right”)

•  1-3 make copies
•  6 and 7 are lazy

Copies of Arguments

•  Fine for small objects

• Often more efficient to pass by reference
•  but by-reference allows making non-local changes
•  best of both worlds: C++’s pass by const reference

• Pass by-result issue: also makes non-local changes
•  nearly identical semantics as pass by-reference
•  often used for returning multiple values
•  consider using tuples instead

OUT Parameters in D

92

void plus(int a, int b, out int c)
{
 writeln(c); // 0
 c = a+b;
}

void main() {
 int x = 3;
 int y = 4;
 int z;
 plus(x, y, z);
 writeln(z); // 7
}

Passing By Reference
•  Two Types…

• Passing an Object Reference (aka pass by sharing)
•  as in Java, C#, and D
•  or a pointer in C++
•  changes to object attributes persist
•  but object-id does not change

•  True pass by-reference
•  as in C++
•  an lvalue is passed; the parameter is an alias for the original arg
•  changes persist in calling context

Reference Parameters
Transparent access to argument

void f(int x) {cout << &x << endl;}

void g(int& x) {cout << &x << endl;}

int main() {
 int n;
 cout << &n << endl;
 f(n);
 g(n);
}

/* Output:
0x7fff5fbff9ac
0x7fff5fbff98c
0x7fff5fbff9ac
*/

void swap(int& x, int& y)
{
 int temp = x;
 x = y;
 y = temp;
}

int main()
{
 int i = 1, j = 2;

 swap(i,j);
 cout << "i == " << i << ", j == " << j;
}

/* Output:
i == 2, j == 1
*/

Pass by Reference

Aliasing
void sigsum(int& n, int& ans) {
 ans = 0;
 int i = 1;
 while (i <= n)
 ans += i++;
}

int f() {
 int x,y;
 x = 10;
 sigsum(x,y);
 return y;
}

int g() {
 int x;
 x = 10;
 sigsum(x,x);
 return x;
}

f() returns 55
g() returns 0

Value-Result ≠ Reference
An Aliasing Issue

void f(ref int x, ref int y) {
 x = 1;
 y = 3;
}

void main() {
 int[2] a = [0,2];
 f(a[0],a[a[0]]);
 writeln(a);
}

Lazy Evaluation
• A hallmark of functional programming

• Allows for a high-degree of separation between caller and
callee

• Results in simple, efficient code

• Parameters are not evaluated at the call site
•  but only when and if they’re used in the called function
•  a little function (“thunk”) is actually passed

Lazy Evaluation in D

void f(bool flag, lazy void exp) {
 if (flag)
 exp();
}

void main() {
 int x;
 f(false,x=3);
 writeln(x); // 0
 f(true,x=3);
 writeln(x); // 3
}

Implementing a Short-Circuit AND

bool myand(lazy int x, lazy int y) {
 if (!x)
 return false;
 if (!y)
 return false;
 return true;
}

void main() {
 int x = 0;
 writeln(myand(0,1/x)); // false (1/x not evaluated)
}

Pass By-Need

• A caching thunk is passed

•  It is only evaluated once, and the result is cached for
subsequent accesses
•  no non-local changes are possible

• Supported by Haskell
•  and to some degree by Scheme
•  can be simulated in languages with a function-call operator

Python Example
• We create a function decorator (“wrapper”) that caches

the parameters when they are first evaluated

def memo(f):
 "A memoizing decorator"
 f.cache = {}
 def wrapper(*args):
 if args in f.cache:
 print "found in cache" # trace to test caching
 return f.cache[args]
 else:
 f.cache[args] = value = f(*args)
 return value
 return wrapper

Using memo

from memo import *

def exc(g):
 print g()
 print g()

exc(memo(lambda : "hello"))

""" Output:
hello
found in cache
hello
"""

THE END!

