
Understanding C++
Exceptions

Chuck Allison
Utah Valley State College
C/C++ Users Journal
www.freshsources.com

Agenda

nThe Philosophy of Exceptions
nThe Mechanics of Exceptions
nExceptions and Resource Management
nException Specifications
nException Safety
n (Based in part on material from Thinking in C++, Volume 2, by

Eckel & Allison)

Pop Quiz!

nWhat does printf() return?

Leading Question

nWhen was the last time you checked
the return value from printf()?

Error Handling via Return Codes

nYou don’t always check them
n (Did I make my point? :-)

n If you do, the extra code clutter
obscures the readability of your
program logic

nEven if no errors occur, you’re always
wasting cycles checking for them
n applies to other error-code schemes as

well
n e.g., errno

The Philosophy of Exceptions

nYou can’t ignore them
n Handle them or die!

nError handling code is localized
n Code is more readable

nYour code runs faster!
n If no errors occur

nYes, there is a space penalty
n But it’s minimal and worth it!

// Illustrates handling “deep errors”

#include <iostream>
using namespace std;

void h()
{

throw "h() has a problem";
}

void g()
{

h();
cout << "doing g..." << endl;

}

void f()
{

g();
cout << "doing f..." << endl;

}

int main()
{

try
{

f();
}
catch(const char* msg)
{

cerr << "Error: " << msg << endl;
}

cout << "back in main" << endl;
}

/* Output:
Error: h() has a problem
back in main
*/

Preliminary Details

n The purpose of a try-block is to place
exception handlers (“catch-clauses”) into the
execution stream

n The throw expression transfers control to an
upstream handler
n the nearest-enclosing “matching” handler

n according to the type of exception thrown
n so it can recover from the error

Pretty Good Idea #1

nUse exceptions to indicate errors
nFor functions that can’t fulfill their

specification
nNot for alternate returns under normal

circumstances

Potential Problem

nWhat if local objects are created?
n In f(), g(), say

nThey may need their destructor called
nNot a problem

Stack Unwinding

nAs execution backtracks up the call
stack, local objects have their
destructors called

nAllows for convenient resource
deallocation
n A key to exception safety

#include <iostream>
using namespace std;

void h()
{

Foo f3;
throw "h() has a problem";

}

void g()
{

Foo f2;
h();
cout << "doing g..." << endl;

}

void f()
{

Foo f1;
g();
cout << "doing f..." << endl;

}

int main()
{

try
{

f();
}
catch(const char* msg)
{

cerr << "Error: " << msg << endl;
}

cout << "back in main" << endl;
}

/* Output:
Foo
Foo
Foo
~Foo
~Foo
~Foo
Error: h() has a problem
back in main
*/

How to Throw Exceptions

nthrow keyword
nThrow objects of user-defined classes

n Can hold auxiliary information
n Allows clear categorization of errors

nUse constructor syntax

// Exception class
class MyError
{

string msg;
public:

MyError(const string& s) : msg(s) {}
string what() {return msg;}

};

// ...

void h()
{

throw MyError("h() has a problem");
}

int main()
{

try
{

f();
}
catch(MyError& x)
{

cerr << "MyError: " << x.what() << endl;
}

// Control goes here ("termination semantics")
cout << "back in main" << endl;

}

Catching Exceptions

n Execution backtracks until it finds a matching
handler

n Exact type, or
n An accessible base class type
n Beware built-in types

n rules are complicated; use classes!
n string literals are const char*

n (not caught via a char* catch parameter)
n Not all conversions apply!

n Sufficient info not available at runtime!

Exceptions and Conversions
class Except1 {};
class Except2 {
public:
Except2(Except1&) {}

};

void f() { throw Except1(); }

int main() {
try {
f();

} catch (Except2&) {
cout << "inside catch(Except2)" << endl;

} catch (Except1&) {
cout << "inside catch(Except1)" << endl;

}
}

/* Output:
inside catch(Except1)
*/

If D derives from B…

ncatch(B&) catches a B or a D
n so order of handlers in code matters!
n B must be an unambiguous, public base

for D
ncatch(B*) catches a B* or D*
ncatch(void*) catches all pointer

types

Order Matters!

nHandlers are tried in order of their
appearance in the code

nMost specific handlers should appear first
nDerived class handlers should precede

base class handlers
n catch(…), if present, should be last

Uncaught Exceptions

n If no handler is found, the library
function terminate() is called
n Which just calls abort()

n If you want to prevent termination:
n Make sure all exceptions are caught!

nYou can install your own terminate
handler
n With set_terminate()

What should terminate do?

nLog the error
nTidy-up as needed (release global

resources, if any)
nexit the program
n terminate cannot:

n return
n throw exceptions

set_terminate

#include <iostream>
#include <exception> // for set_terminate()
#include <cstdlib> // for exit()
using namespace std;

void handler()
{

cout << "Renegade exception!\n";
exit(1);

}

int main()
{

void f();
set_terminate(handler);

try
{

f();
}

catch(long)
{

cerr << "caught a long" << endl;
}

}

void f()
{

throw "oops"; // Doesn’t match a long
}

// Output:
Renegade exception!

terminate() is called when...

nA matching handler is not found,
including when:
n a constructor for a static object throws
n An exit handler (from atexit) throws

nA destructor throws during stack
unwinding
n Only one exception at a time, thank you!
n Destructors shouldn’t emit exceptions

How does all this really work?

n throw is conceptually like a function call
n Takes the exception object as a “parameter”

n This special “function” backtracks up the program
stack (the dynamic call chain)
n Reading information placed there by each function

invocation
n Information placed in each “Stack Frame”
n About each function’s local objects and try blocks

n If no matching handler is found in a function, local
objects’ are destroyed and the search continues
n Until a matching handler is found
n Or terminate() is ultimately called

Space Overhead

struct C
{

~C(){}
};

void g(); // for all we know, g may throw

void f()
{

C c; // Destructor must be called
g();

}

Compiler Exception Support

nMicrosoft Visual C++ .NET (-GX)
n 1,420 bytes vs. 2,069 bytes

nBorland C++ Builder 6.0 (-x-)
n 813 bytes vs. 2,150 bytes

Runtime Overhead

nTwo Types
n Adding exception-related info to each

stack frame
n The work done during stack unwinding

n This is good overhead, since you want
things cleaned up

n Following return-code paths the old-
fashioned way has a cost too, you know!

The Zero-cost Model

nAdorning each stack frame with
exception-related info can have a
runtime cost

nCan be avoided
n Offsets for objects with destructors can

be computed once at compile time and
stored outside the runtime stack

nGNU and Metrowerks compilers
currently support this

Another Leading Question

Since exception objects originate in a
different scope from where they’re
caught, how are they accessible in a
handler?

Answer

n Exception objects are temporaries
n A copy is thrown

n Const-ness is stripped away (except for string
literals)

n Exceptions must be copyable and destructible
n accessible in the context of the throw expression

n Catching by value creates an additional copy
n And derived objects caught as a base are sliced

n Catch-by-pointer, is problematic (how to know
whether you have to delete it)?

Pretty Good Idea #2

nCatch exceptions by reference.
nWhat about const reference?

n A local stylistic concern
n Const and volatile are ignored in finding

a matching handler
n You can modify the exception object as

it moves up the stack
n because the same object is re-thrown

Standard Exceptions

nThrown by the Standard Library
nHierarchy of Logic vs. Runtime Errors
n exception base class

Standard Exceptions

n exception
n logic_error (client program error)

n domain_error, invalid_argument,
length_error, out_of_range

n runtime_error (external error)
n range_error, overflow_error,
underflow_error

n bad_alloc (memory failure)
n bad_cast (bad dynamic_cast w/ref)
n bad_exception (unexpected)
n bad_typeid (typeid w/null)

try
{

string s;
cout << s.at(100) << endl; // invalid arg

}
catch (logic_error& x)
{

cout << "logic_error: " << x.what()
<< endl;

}
catch (runtime_error& x)
{

cout << "runtime_error: " << x.what()
<< endl;

}
catch (exception& x)
{

cout << "exception: " << x.what()
<< endl;

}

// Output:
logic_error: position beyond end of string

Using Standard Exceptions

#include <iostream>
#include <stdexcept>
#include <string>
using namespace std;

// Exception class (polymorphic because
// std::exception is)
struct MyError : runtime_error
{

MyError(const string& msg)
: runtime_error(msg){}

};

int main()
{

try
{

f();
}
catch (MyError& x)
{

cerr << x.what() << endl;
}
catch (exception& x)
{

cerr << x.what() << endl;
}
catch (...) // catch-all
{

cerr << "Unknown error\n";
}

cout << "back in main" << endl;
}

// Using RTTI (a sometimes-useful trick):
int main()
{

try
{

f();
}
catch(exception& x)
{

cerr << typeid(x).name() << ':'
<< x.what() << endl;

}
catch (...) // catch-all
{

cerr << "Unknown error\n";
}

cout << "back in main" << endl;
}

MyError:h()has a problem
Back in main

Pretty Good Idea #3

nThrow objects of classes derived
(ultimately, not necessarily directly) from
std::exception

n (std::exception does not take a
std::string parameter in its ctor)

Exceptions and IOStreams

nHow do you test for stream errors?
n if (strm.fail())… if (!strm)…

nYou’re checking a “return value”!
nYou can have stream errors throw:
strm.exceptions(ios::failbit);

nAn ios::failure exception is thrown

What Should a Handler Do?

nFully recover, then resume somehow, or
nPartially recover and re-throw the

exception
(by using throw;)

Pretty Good Idea #4

n If you can’t do anything about an
exception, don’t catch it!

nUnless you need to release resources
n then re-throw the exception

Pretty Good Idea #5

n catch(...) should usually re-throw

Resource Management

nDangling Resource Problem
n a function that allocates a resource might

throw before deallocating the resource
nSolutions:

n Handle the situation locally
n use an Object Wrapper (RAII)

n auto_ptr, the standard wrapper for
memory
n a smart pointer

A Dangling Resource

void f(const char* fname)
{

FILE* fp = fopen(fname,"r");
if (fp)
{

g(fp); // Suppose g() throws?
fclose(fp); // Then this won't happen!

}
}

// continued...

Local Handlers

void f(const char* fname)
{

FILE* fp = fopen(fname,"r");
if (fp)
{

try
{

g(fp);
}
catch(...)
{

fclose(fp);
puts("File closed");
throw; // Re-throw for

// other handlers
}
fclose(fp); // The normal close

}
}

RAII

n “Resource Allocation is Initialization”
nUse objects on the stack to control

resources
nThe constructor allocates
nThe destructor deallocates

Object Wrappers
(To leverage stack unwinding)

class File
{

FILE* f;

public:
File(const char* fname, const char* mode)
{

f = fopen(fname, mode); // allocate
}
~File()
{

fclose(f); // deallocate
puts("File closed");

}
};

void f(const char* fname)
{

File x(fname,"r");
g(x.getFP());

}

Pretty Good Idea #6

nUse object wrappers to manage
resources

Memory Leaks

void f()
{

T* p = new T;
g(p); // Suppose g() throws?
delete p; // Then this won't happen!

}

auto_ptr

void f()
{

auto_ptr<T> p(new T);
g(p);

}

// delete p is implicit

Another auto_ptr Example

Employee* Employee::read(istream& in)
{
// Create object from file data
auto_ptr<Employee> p(new Employee);
in >> *p;
if (in.fail())
throw EmployeeError("File input error");

return p.release();
}

Pretty Good Idea #7

nWrap local & member heap allocations
in an auto_ptr object
n scalars only – no arrays!

nDon’t do much else with it
n Herb Sutter, “Using auto_ptr

Effectively”, CUJ, October 1999, pp. 63-
67.

Dynamic Memory Mgt.

nnew operator throws bad_alloc when
memory is exhausted

nYou can request traditional null-return
behavior with nothrow_t version

nOr call set_new_handler to install
your own new handler

new and Exceptions
#include <new>
#include <iostream>

int main()
{

try
{

int* p = new int;
cout << "memory allocated\n";

}
catch (bad_alloc& x)
{

cout << "memory failure: " << x.what()
<< endl;

}
}

new - Traditional Behavior

#include <new>
#include <iostream>
using namespace std;

int main()
{

int* p = new (nothrow) int;
if (p)

cout << "memory allocated\n";
else

cout << "memory failure\n";
}

Exception Specifications

nTo control what exceptions are thrown
nNot just documentation
nAn enforced specification

n enforced at runtime
n Except non-covariant, derived ES’s are

caught at compile time
nControversial commentary:

n ES’s are not widely used

Exception Specifications

class A;
class B;

void f() throw(A,B)
{

// Whatever
g();

}

Can also throw objects derived from A or B.

// Equivalent to:
void f()
{

try
{

// Whatever
g();

}
catch(A&)
{

throw; // rethrow
}
catch(B&)
{

throw; // rethrow
}
catch(...)
{

std::unexpected();
}

}

Exception Specifications

nvoid f() throw()
n No exceptions allowed

nvoid f()
n Can throw any exception

nNot part of the type of a function
n can’t use with typedef or overloading

Unexpected Handlers

nThe default unexpected() calls
terminate()

nYou can replace it via
set_unexpected()

(20-25 minutes left – skip 6)

What should unexpected() do?

nLog the error
nAbort

n You need to fix your program!
n unexpected cannot return

n but it can throw (see next slide)

Mapping Exceptions

nYou can leave some exceptions
unspecified and catch them in one place
n Using an unexpected handler and
bad_exception

nA “work-around” for not having
unchecked exceptions like Java does

bad_exception

nA special way to map unexpected
exceptions to a single type

n Just add bad_exception to the
specification:

void f() throw (std::bad_exception)

nYou must install an unexpected() that
throws

nThe original exception is lost

// Works on GNU
#include <exception>
#include <iostream>
using namespace std;

void handler()
{

cerr << "unexpected exception\n";
throw;

}

void g()
{

throw 1;
}

void f() throw(bad_exception)
{

g();
}

int main()
{

set_unexpected(handler);
try
{

f();
}
catch (bad_exception&)
{

cout << "caught exception\n";
}

}

unexpected exception
caught exception

Managing Unexpected Exceptions

nCan wrap calls to set_unexpected in
a class:
n constructor sets unexpected to

throw a user-defined exception
n destructor resets unexpected

nSee Stroustrup, 3rd Edition, pp. 378-
380

Exception Specifications and
Inheritance
n Functions in derived classes must not expand

the exception specification list of the base
class function they override

n This would break the base class’ contract
n But they can throw exceptions derived from

those in the base class method’s list
n Fancy term: covariance

n They can also specify fewer exceptions
n Because the contract is still preserved

n Example: next two slides

Base

Derived

BaseExcept

DerivedExcept

class Base
{
public:

virtual void f() throw(BaseExcept);
};

class Derived : public Base
{
public:

// Any of these three is okay:
// void f() throw(BaseExcept);
// void f() throw(DerivedExcept);
// void f() throw() {}

// These would be errors (caught at compile time):
// void f() throw(RogueExcept);
// void f() {}
};

What if g() throws?

void f() throw(A,B)
{

// Whatever…, then:
g();

}

Pretty Good Idea #8

n If f() calls g(), and g() has no
exception specification, don’t declare an
exception specification for f()

Exception Specifications and
Templates
nThey just don’t mix!
nYou never know what a generic type

might do
n Containers call copy constructors and

assignment operators a lot
n Which can throw exceptions

nEspecially crucial with container design
nYou can use throw(), of course

Rule of Generic Container Design

nDon’t use Exception Specifications with
generic containers

n Instead, document the exception you
know about
n This is what the Standard Library does
n It only uses throw()

What’s Wrong Here?
void StackOfInt::grow()
{

// Enlarge stack’s data store
capacity += INCREMENT;
int* newData = new int[capacity];
for (size_t i = 0; i < count; ++i)

newData[i] = data[i];
delete [] data;
data = newData;

}

An Improvement
void StackOfInt::grow()
{

// Enlarge stack’s data store
size_t newCapacity = capacity + INCREMENT;
int* newData = new int[newCapacity];
for (size_t i = 0; i < count; ++i)

newData[i] = data[i];

// Update state only when "safe" to do so
delete [] data;
data = newData;
capacity = newCapacity; // moved

}

Fundamental Principle of Exception
Safety
n Separate operations that may throw from

those that change state
n only change state when exceptions can no

longer occur
n Corollary:

n Do one thing at a time (cohesion)
n why std::stack<T>::pop() returns void

n The returned copy might throw
§ and the state has changed!

Rules of Exception Safety
n If you can’t handle an exception, let it propagate up

(“Exception neutral”)
n Leave your data in a consistent state

n Use RAII to allocate resources
n Only change your state with non-throwing ops
n An object should only own one resource

n Functions should perform only one logical operation
n Destructors should never throw
n Good references:

n Sutter, Exceptional C++ and More Exceptional C++
n Abrahams,

www.boost.org/more/generic_exeption_safety.html

Levels of Exception Safety
(David Abrahams)

n Basic Guarantee
n No resources will be leaked
n Good, but not always sufficient

n State may be “consistent”, but not “acceptable”
n Strong Guarantee

n No changes will occur if an exception happens
n Requires roll-back semantics (not always

possible)
n Iterators may be invalidated, for example

n No-throw Guarantee
n No exceptions will escape
n Required of destructors and swap()

A Safe operator=()

n First provide a swap member function that
doesn’t throw
n Just swap state (ptrs and ints) with std::swap

n Then op= swaps its rhs value parameter
n No need to worry about self-assignment (value

parm)

template<class T>
Stack<T>& Stack::operator=(Stack<T> rhs)
{

swap(rhs); // Stack<T>::swap(Stack<T>&)
return *this;

}

Really Good Idea #8

nDon’t let an exception escape from a
destructor.

n If you see no alternative, however,
make sure an exception isn’t pending
with the uncaught_exception() library
function, then proceed.
n I’ve never seen it done

#include <exception>
#include <iostream>
using namespace std;

class C
{
public:

~C()
{

if (uncaught_exception())
cout << "unwinding..\n";

else
throw 1;

}
};

int main()
{

try
{

C c;
}
catch (int&)
{

cout << "caught an int\n";
}

caught an int

try
{

C c;
throw "";

}
catch (char*)
{

cout << "caught a char*\n";
}

}

unwinding..
caught a char*

Destructors that Throw

nAre Evil
nUnfit for use in containers
nSo use uncaught_exception() only

under controlled (non-container)
conditions

A Bit of Esoterica

nFunction-level try blocks
nRarely used…

Function-level Try Blocks
(as if we care)

try
void f(int a, float b)
{

…
}
catch (T& t)
{
// a and b in scope here (not f’s locals)
// can throw or return from here

}

Member Initializers
(to care is rare)

n Special syntax to catch member constructors
that throw:

X::X(Y init) // suppose X has a y-member
try

: y(init)
{

[normal constructor body here]
}
catch (YException& ex) {/* should throw;
can’t return */}

About Object Construction

n An object doesn’t exist until its constructor
exits successfully

n If an exception occurs during construction,
there is no complete object

n Therefore, in a constructor handler, you can’t
reliably access an object’s state

n The only thing to do is to throw another
exception
n After writing to log file, say
n Or you could just let the original exception

propagate
n If you don’t throw, a rethrow is implicit

Finis, El Fin, O Fim,
The End

