
BACK TO THE WELL
Principles of Software Design

Chuck Allison
Better Software Conference, November 2011

(slides available at freshsources.com/bs)

BANGKOK (Reuters – May 12, 2003) – Security guards
smashed their way into an official limousine with
sledgehammers on Monday to rescue Thailand’s finance
minister after his car’s computer failed… All doors and
windows had locked automatically when the computer
crashed, and the air-conditioning stopped, officials said.
“We could hardly breathe for over 10 minutes… It took
my guard a long time to realize that we really wanted the
window smashed so that we could crawl out. It was a
harrowing experience.”

Internal Software Quality

•  “The General Principle of Software Quality is that
improving quality reduces development costs”

 — McConnell, Code Complete 2nd Ed.

•  “The purpose of design is to create a clean and relatively
simple internal structure”

 — Stroustrup, C++ Prog. Lang., 2nd Ed.

Attributes of Quality Software

• Usable

• Reliable

• Adaptable

• Cost effective

• How are these attributes attained?

Quality is No Accident

•  It is designed into software

•  It is maintained by refactoring and
other agile practices

• But it all starts with Design

•  “Reliability cannot be retrofit” – P. J. Plauger

This Morning’s Agenda

• What is Design?

•  Fundamental Principles of Software Design

•  The SOLID Principles of OO Design

• Applying Good Design Principles

What Is Design?

•  1. to prepare the preliminary sketch or the plans for a
work to be executed, especially to plan the form and
structure of: to design a new bridge.

•  2. to plan and fashion artistically or skillfully.

•  3. to intend for a definite purpose: a scholarship designed
for foreign students.

What is Design?

About Software Design

• Based on timeless design principles

• Methodologies come and go
•  “Methodologies are increasingly seen as helpful guides to capable

people who could do most of it without them, rather than as the
step-by-step cookbook that removes responsibility for
understanding what you are doing and why.” – CSC Report

•  The ultimate expression of design is found in code

What is Design?

What is Design?

Disclaimer

•  Design is a Creative, Imprecise, Incremental Art
•  “Discovery of the meaningful abstractions in a given domain is an

evolutionary process” (— Booch)
•  Has both tactical (physical) and strategic (architectural) components

•  Design Principles are sometimes at odds with each other
•  There is no One Right Answer
•  This is Good Thing

•  You, the Designer, resolve the conflict
•  by balancing the competing forces at play according to timely, local

and global needs

What is Design?

Cogent Quote

"I am quite convinced that in fact computing will become a
very important science. But at the moment we are in a very
primitive state of development; we don't know the basic
principles yet and we must learn them first. If universities
spend their time teaching the state of the art, they will not
discover these principles and that, surely, is what
academics should be doing.”

– Christopher Strachey, 1969

What is Design?

DESIGN FUNDAMENTALS

“Fundamentals Never Go Out Of Style”
-- Grady Booch (CIO.com 2008)

• Create Crisp and Resilient Abstractions

• Maintain a Good Separation of Concerns

•  Focus on Simplicity

Design Fundamentals

“The acts of the mind, wherein it exerts power over simple
ideas, are chiefly these three:

1)  Combining several simple ideas into on compound one,

and thus all complex ideas are made.

2)  The second is bring two ideas, whether simple or complex,
together, and setting them, by one another so as to take a
view of them at once, without uniting them into one, by
which it gets all its ideas of relations.

3)  The third is separating them from all other ideas that
accompany them in their real existence: this is called
abstraction, and thus all general ideas are made.”

— John Locke (1690)

Design Fundamentals

“The acts of the mind, wherein it exerts power over simple
ideas, are chiefly these three:”

1)  Combining existing parts into a new “whole” (composition)

2)  Relationships (coupling)

3)  Naming and encapsulating abstractions

Design Fundamentals

Abstraction: The Currency of Software
• Dictionary Definition of Abstraction:

•  1. A general quality or characteristic, apart from concrete realities,
specific objects, or actual instances

•  2. The process of formulating generalized ideas or concepts by
extracting common qualities from specific examples

•  “Abstraction is the essence of simple and effective
software design” – Tony Hoare

Abstraction

Abstraction: Key To Design (and
Business) Success

•  “The art of abstract thinking lies in choosing qualities that
are not only appropriate for current examples, but that will
continue to apply in [the] future.”

•  “In business terms, it is to find a metaphor or description
for the business that will endure for longer than the
particular way the business operates today.”

•  -- CSC Report, “Implementing Business Objects”

Abstraction

Selective Ignorance
•  “It does not mean [totally] ignoring the other aspects, it is

just doing justice to the fact that from this aspect's point of
view, the other is irrelevant.” – Dijkstra, 1974

•  The details of making a concept concrete and usable are
hidden from users
•  implementation is encapsulated

• User are left with the essence of the concept
•  the interface

• Hence, abstractions allow us to work at a higher level

Abstractions Determine Quality
-- Daniel Jackson, MIT

Abstractions For User For Developer

good robust, flexible clear model clean interfaces

typical weak, broken complex
model

messy interfaces

bad non-existent no model coupling hell

Abstraction

Where Abstractions Live
• Everywhere!

•  In the user/problem space
•  e.g., a word, paragraph, vehicle, customer, itinerary, train, loan

•  In the solution space
•  e.g., a thread, a hash table, a drawing context

•  In between
•  e.g., a spreadsheet

Abstraction

Common Software Abstractions
• Symbolic Constants

•  Types

•  Functions

• Classes

• Modules

• Patterns …

Abstraction

“An abstraction denotes the essential
characteristics of an object that distinguish it from
all other kinds of objects and this provides crisply
defined conceptual boundaries, relative to the
perspective of the viewer.”

“An abstraction focuses on the outside view of an
object, and so serves to separate an object’s
essential behavior from its implementation.”

— Booch

Abstraction

Abstraction Boundaries

• All abstractions encapsulate something

•  The boundary is the interface

• Clients (should) program to the interface

• Where the boundary is drawn, and what the interface is
determines the quality of the abstraction

Abstraction

Principle of Least Astonishment

•  “An abstraction captures the entire behavior of some
object, no more and no less, and offers no surprises or
side effects that go beyond the scope of the abstraction.”

Abstraction

Principle: Program to an Interface

• Not an Implementation
•  Interfaces should expose no internals

•  “No part of a complex system should depend on the
details of any other part.” (Ingalls, POPL 5)

Abstraction

Principle: Program to an Interface

• Dependencies on implementation leads to “Coupling Hell”
•  users should be shielded from implementation detail
•  they are partly responsible to remain so
•  i.e., follow the Principle of Least Knowledge

•  “What you do in the bathroom is no secret, but it is
private.” – P.J. Plauger

Abstraction

Exposed Implementation

• Getters
•  internal types may change

Abstraction

Exposed Implementation

• Setters
•  you have lost control of the

abstraction

Abstraction

Measuring the Quality of Abstractions

• How do we know what belongs “inside” and what belongs
“outside”

•  “Intracomponent linkages are generally stronger than
intercomponent linkages. This fact has the effect of
separating the high-frequency of the components –
involving the internal structure of the components – from
the low-frequency dynamics – involving interaction among
components.” (Simon, H., The Sciences of the Artificial,
Cambridge, 1982)

Abstraction

Overall Guiding Principle of Design

CREATE COHESIVE ABSTRACTIONS

Abstraction

Cohesion

•  cohere: to be naturally or logically connected

•  “Conceptual Clustering”

• Principle: Maximize Cohesion
•  Self-containment: Keep together things that belong together
•  Separate everything else

• Most sound design practices are variations of or follow
from this guiding principle

Abstraction

Aiming for Cohesion
-- P. J. Plauger

•  “When you can describe what a module does in a simple,
active sentence, then you probably have a highly
cohesive module that will stay around.”

•  “Descriptions such as ‘clear update record’, or ‘compute
alternative minimum tax’, indicate functional
cohesiveness.”

Abstraction

Principle: Minimize Coupling

• Coupling ⟺ Cohesion == Yin ⟺ Yang

Abstraction

Principle: Minimize Coupling

• When things that belong together are not
together, then there is needless communication
across abstraction boundaries

Abstraction

Principle: Minimize Coupling

• High coupling is a sign of poor cohesion
•  think cohesion; low coupling will naturally follow
•  think objects; data and methods follow from

 responsibilities
•  think high level; details will follow

Abstraction

Fundamentals of Function Design

• A function should be as self-contained as possible
•  it does its one job but no more; no extraneous code

• Black-box Model of a Function:

• Dependencies on external objects should be minimal
•  Preferably only through parameters and return values

Process
Input Output

Functions vs. Procedures

• Side Effects!
•  changes other than in return values

• Procedures change non-local state
•  behind the caller’s back

• We routinely do this with objects and methods
•  Complex objects are hard to debug
•  Getters and Setters are often Problematic

Suspicious Types of Coupling

• Access to variables in other scopes
•  global variables
•  other non-local variables, e.g. via reference parameters

• Access to functions inside other scopes

• Access to types inside other scopes

• All these dependencies can complicate software

Case Study: String Tokenizing
• Consider C’s strtok function

•  char* strtok(char* search, const char* break);

•  The string, search, is traversed and modified
•  characters in break are skipped
•  a ‘\0’ (NUL) replaces the first break character after the token
•  it remembers where it left off for subsequent calls
•  the position of the first non-break character is returned

• Note: strtok must be called in 2 different ways

strtok Example

int main() {
 char search[BUFSIZ];
 strcpy(search,"This is 1just2a3test#.");
 char brkset[] = " \t\n\r\f\v`~!@#$%^&*()-_=+;:'\",<.>/”
 "?01234567890";
 char* tokenptr = strtok(search,brkset);
 while (tokenptr != 0) {
 cout << tokenptr << endl;
 tokenptr = strtok(0,brkset);
 }
}

This
is
just
a
test

This\0is 1just2a3test#.
This\0is\01just2a3test#.
This\0is\01just\0a3test#.
This\0is\01just\0a\0test#.
This\0is\01just\0a\0test\0#.

The Dependencies of strtok

• What “wrong” here?

Caller strtok Static Data

modifies

modifies

What’s “Wrong” with strtok?
•  It modifies the original search string

•  a side effect!

•  It keeps static data
•  another side effect!
•  shared among all calls to strtok
•  calls from independent clients can’t be interleaved

• Different calls to strtok have different semantics
•  when you pass 0 (NULL), it picks up where it left off
•  it is essentially 2 different functions

An Improved Tokenizer

• Will not modify the caller’s data
•  but how can we keep track of where we are?

• Will not use shared (static) data to track its state
•  but where will it put it?

• Will separate initialization from iteration
•  different calls for different actions
•  so we will need more that one function!

Another Try at strtok
struct Tokenizer {
 const char* search;
 const char* brkset;
 int pos;
};

Tokenizer* init_tok(const char* s, const char* brkset);

string next_token(Tokenizer* tok);

void del_tok(Tokenizer* tok);

See code in strtok2.cpp.

Using Tokenizer

int main() {
 char search[BUFSIZ];
 strcpy(search,"This is 1just2a3test#.");
 char brkset[] = " \t\n\r\f\v`~!@#$%^&*()-_”
 "=+;:'\",<.>/?01234567890";
 Tokenizer* tok = init_tok(search,brkset);
 string word = next_token(tok);
 while (!word.empty()) {
 cout << word << endl;
 word = next_token(tok);
 }
 del_tok(tok);
}

The Dependencies of Tokenizer

Using a class would be better
of course (see strtok3.cpp)

Caller next_token Heap Data

del_tok

init_tok
But the data is
“self-contained”

Reentrant Functions

•  The problem with threads: race conditions on shared data
•  Using critical sections for shared data is a topic for another day

•  strtok is not thread-safe:
•  it uses static data which is shared by its very nature
•  but each thread needs its own copy; FAIL

•  Thread-safe functions must be reentrant
•  they “start from scratch” on each call;
•  no related static data

Principle: Keep Interfaces Small

• Fat Interfaces are often a sign that too many
things are crammed into a single abstraction
(“god objects”)

•  The Goldilocks Principle: good cohesion requires things

to be “just right”
• Beware of extremes (including XP :-)

Abstraction

Principle: Keep Interfaces Small

• An abstraction should have one key, conceptual
reason to exist

• Separate complex abstractions into smaller,
logically independent abstractions

Abstraction

Principle: Keep Interfaces Small

• Corollary:

“Every class should embody only about 3–5
distinct responsibilities.” – Booch

Abstraction

Principle: Keep Interfaces Small

• Corollary:

Minimize the number of function parameters (3-5)

Abstraction

Keyword Arguments
Python Example
•  Large parameter lists are made easier with keyword args
• Example: sorted(iterable[, cmp[, key[, reverse]]])

>>> sorted([5, 2, 3, 1, 4])
[1, 2, 3, 4, 5]

>>> sorted([5, 2, 3, 1, 4],reverse=True)
[5, 4, 3, 2, 1]

>>> sorted("This is a test string from Andrew".split(), key=str.lower)
['a', 'Andrew', 'from', 'is', 'string', 'test', 'This']

Abstraction

Abstraction

Interface Design
• Any client interaction

• Not just GUIs

• Most everything has an interface

•  functions
•  classes
•  modules and packages
•  …

Abstraction

A Date Class
Example from Scott Meyers

class Date {
public:
 Date(int month, int day, int year);
 …
};

How can a user misuse this class?

Abstraction

Using Types to Encourage Correct Usage
// Source: Meyers, S., The Most Important Design Guideline?, IEEE
// Software, July/August 2004
struct Day { int d; };
struct Year { int y; };

class Month {
 static const Month Jan = {1};
 static const Month Feb = {2};
// …
private:
 explicit Month(int); // User can’t create a Month
};

class Date {
public:
 Date(Day d, Month m, Year y) {…}
 Date(Month m, Day d, Year y) {…}
 Date(Year y, Day d, Month m) {…}
// …
};

Abstraction

Interface Responsibility

•  “Responsibility for interface usage errors belongs to the
interface designer, not the interface user”

• Principle: “Make interfaces easy to use correctly and hard
to use incorrectly”

— Scott Meyers

Abstraction

Principle: Don’t Repeat Yourself (DRY)
aka the law of One Right Place

• Another example of poor cohesion
•  Don’t scatter the components of an abstraction
•  Repetitions need to be collapsed into a single abstraction

•  "Every piece of knowledge must have a single,
unambiguous, authoritative representation within a
system.” – The Pragmatic Programmers

Abstraction

DRY Damage

•  The Software is Bigger

• Harder to Comprehend

• Harder to Fix

• Harder Change

Abstraction

A DRY Violation
• Suppose you are a C++ library developer, creating a

String class

• You begin by encapsulating an array of characters
•  constructor
•  destructor

• After a simple test, you add:
•  copy constructor
•  assignment operator

Abstraction

String class: First Pass

class String {
 char* data;
public:
 String(const char* s = "") {
 data = new char[strlen(s)+1];
 strcpy(data,s);
 }
 ~String() {
 delete [] data;
 }
 operator const char*() const {
 return data;
 }
};

Abstraction

String Class: Second Pass
 String(const char* s = "") {
 data = new char[strlen(s)+1];
 strcpy(data,s);
 }
 ~String() {
 delete [] data;
 }
 String(const String& s) {
 data = new char[strlen(s.data)+1];
 data = strcpy(data,s.data);
 }
 String& operator=(const String& s) {
 if (&s != this) {
 delete [] data;
 data = new char[strlen(s.data)+1];
 data = strcpy(data,s.data);
 }
 return *this;
 }

Abstraction

DRY Violations Sneak Up On You!
 char* clone(const char* s) {
 return strcpy(new char[strlen(s)+1],s);
 }
public:
 String(const char* s = "") {
 data = clone(s);
 }
 ~String() {
 delete [] data;
 }
 String(const String& s) {
 data = clone(s.data);
 }
 String& operator=(const String& s) {
 if (&s != this) {
 delete [] data;
 data = clone(s.data);
 }
 return *this;
 }

Abstraction

Some DRY Solutions

• Move common code into functions

• Move common class features into base classes

• Make code generic when applicable
•  type-independent code

•  “If your doing something more than once, you’re probably
doing something wrong.”

•  [Source: Scott Meyers, Better Software No Matter What]

Measuring the Quality of Abstractions
Redux

• Sufficiency
•  capture enough of the idea to be useful
•  minimal interface

• Orthogonality
•  provide all needed primitive operations (that require access to

internals for efficient implementation)
•  think twice about “convenience methods” that can be implemented

with public methods

Abstraction

• “You don’t put the dishwasher in the bathroom”

 — Grady Booch

Separation of Concerns

Cogent Quote

•  “A scientific discipline separates a fraction of human
knowledge from the rest: we have to do so, because,
compared with what could be known, we have very, very
small heads.” – Dijkstra, 1974

Separation of Concerns

Separation of Concerns
A Natural Consequence of Cohesion

•  “For the separation to be meaningful, we have also an
internal and an external requirement.”

Separation of Concerns

Separation of Concerns
A Natural Consequence of Cohesion

•  “The internal requirement is one of coherence: the
knowledge must support the abilities and the abilities must
enable us to improve the knowledge.

Separation of Concerns

Separation of Concerns
A Natural Consequence of Cohesion

•  “The external requirement is one of what I usually call "a
thin interface"; the more self-supporting such an
intellectual subuniverse, the less detailed the knowledge
that its practitioners need about other areas of human
endeavour, the greater its viability.”

 – Dijkstra, 1974

Separation of Concerns

Separation Principle #1

• “Separate interface and implementation”

• That horse is dead :-)

Separation of Concerns

Separation Principle #2

• “Separate things that change from things that stay
the same”

•  Interfaces (usually) don’t change; implementation does
•  So Principle #1 is actually a special case of Principle #2

Separation of Concerns

The Strategy Design Pattern

•  “Define a family of algorithms, encapsulate each one, and
make them interchangeable. Strategy lets each algorithm
vary independently from clients that use it.”

• Also Known As: Policy

Separation of Concerns

Strategy Sketch

Client Strategy

StrategyImpl1 StrategyImpl2

Separation of Concerns

Implicit Strategy in C++

queue Sequence

list vector deque

queue<int,list> q; // Use a list as a storage policy

Separation of Concerns

Separation Principle #3

• Separate client from server

•  They’re often physically separated anyway
•  different process
•  different computer
•  different network

• Example:
•  Database servers
•  CORBA, COM
•  The Web (duh!)

Separation of Concerns

A Numeric Separation Example
• Classic algorithm for sqrt(x):

•  start with an initial guess, g1

•  compute next guess as:
•  g2 = ½ (g1 + x/g1)

•  continue until the difference between guesses is “small”

def mysqrt(x,g1,tol):
 g2 = (g1 + x/g1)/2.0
 while abs(g2 - g1) > tol:
 g1 = g2
 g2 = (g1 + x/g1)/2.0
 return g2

Rate this design…

Separation of Concerns

Is There Room for Improvement?
• Depends…

•  There is no coupling to non-local data ✔
•  There is no shared data ✔

• Hmmm. Maybe it’s “perfect”

• How is its cohesion?

Separation of Concerns

There are 2 Things At Play in mysqrt

•  1) Generating the next guess

•  2) Checking the stopping criterion

• Maximal cohesion says do only “one thing”

• How can these be separated?

Separation of Concerns

Loosening the Coupling

•  Iterating until a stopping condition is obtained is a very
common operation

•  Let’s feed the sequence of guesses to a separate, generic
iteration procedure

•  Thus we will loosen the coupling between the two actions
•  by making the sequence of guesses a parameter to the iteration

Separation of Concerns

The Sequence Generator
• An unbounded sequence

def sqrt_seq(x,g):
 yield g
 while True:
 g = (g + x/g) / 2.0
 yield g

Separation of Concerns

The Iteration Procedure
•  It decides when to quit

def iterate(seq, tol):
 last = seq.next()
 current = seq.next()
 while (abs(current-last) > tol):
 last = current
 current = seq.next()
 return current

Separation of Concerns

Using the New Arrangement

• AND, we can now reuse iterate on any sequence!

• See sqrt.cpp for a C++ version…

def mysqrt(x,g1,tol):
 return iterate(sqrt_seq(x,g1),tol)

Separation of Concerns

The Behavior of C++’s stack::pop()

•  It doesn’t return anything!
•  it only removes the top element

• Why?

Separation of Concerns

Separation Principle #4: Ownership

• Principle: Only one abstraction should “own” an
object
•  The same layer of abstraction that allocates a resource is

responsible to deallocate it

Separation of Concerns

Separation Principle #4: Ownership

• Corollary: Separate the creation/destruction of an
object from client use of the object

• Example: Factory Design Pattern

Separation of Concerns

Separation Principle #4

• Corollary: Minimize the ownership of objects

Separation of Concerns

Object Management
-- Tom Cargill

1.  Creator as Sole Owner

2.  Sequence of Owners
 1 at a time

3.  Shared Ownership
 simultaneous access

Separation of Concerns

C++ 2011’s unique_ptr

void function()
{
 unique_ptr<Resource> owner(res);
 owner->do_resource_stuff();
 unique_ptr<Resource> new_owner = owner;
 new_owner->do_resource_stuff();
}

// At exit, res is cleaned up when
// new_owner is destroyed

Separation of Concerns

Shared Ownership
C++ 2011’s shared_ptr

class Connection {
public:
 Connection() {cout << "connecting...\n";}
 ~Connection() {cout << "disconnecting...\n";}
};

class Client {
 shared_ptr<Connection> ptr;
public:
 Client(shared_ptr<Connection>& p) : ptr(p) {}
};

Separation of Concerns

int main() {
 shared_ptr<Connection> conn(new Connection);
 cout << conn.use_count() << endl;
 {
 Client c1(conn);
 Client c2(conn);
 cout << conn.use_count() << endl;
 }
 cout << conn.use_count() << endl;
}

connecting...
1
3
1
disconnecting...

Separation of Concerns

Layered Abstractions
•  “All well-structured object-oriented architectures have

clearly defined layers, with each layer providing some
coherent set of services through a well-defined and
controlled interface.” – Booch

•  “The design principle … of separating the interface from
the implementation, should be applied rigorously at each
layer’s boundaries.” – CSC Report

Separation of Concerns

Examples of Layering

• A layer is a group of components that are reusable in
similar circumstances

•  3-tier Architecture
•  Presentation ⟹ Business Rules ⟹ Persistence

• OSI Model

Separation of Concerns

The Law of Demeter
aka Principle of Least Knowledge

•  Layers are themselves abstractions

• Clients should not “cross” abstraction boundaries
•  but should use interfaces

• Anything beyond more than 1 boundary is a “stranger”

•  Law of Demeter: Don’t Talk to Strangers

Separation of Concerns

The Law of Demeter
Guidelines

• A method should only access:
•  Fields in its object
•  Methods in its class
•  Parameters it receives
•  Anything it creates dynamically

• Beware multiple “dots”:
•  o1.o2.o3.m()
•  o.m1().m2().m3()

Separation of Concerns

Separation Summary

•  “Go ahead and chop your [code] into modules, but do it
along the seams.” – PJP

•  In other words, “maximize cohesion”

Separation of Concerns

What We’ve Heard

“Solutions should be as simple as
possible, but no simpler”

• Who said this?

What Einstein Really Said

“It can scarcely be denied that the supreme goal of all
theory is to make the irreducible basic elements as
simple and as few as possible without having to
surrender the adequate representation of a single
datum of experience.”

• Philosophy of Science, Vol. 1, No. 2 (April 1934), p. 165.

Simplicity

•  “The discovery of fundamental principles leads to a
simpler conceptual model.”

 — Booch

Focus On Simplicity

•  “There are two ways of constructing a software design:
one way is to make it so simple that there are obviously
no deficiencies and the other is to make it so complicated
that there are no obvious deficiencies.” – Tony Hoare

• Principle: Prefer the former :-)

Simplicity

Focus on Simplicity Early

•  “Since the essence of programming is controlling
complexity, nothing lowers the cost of debugging and
maintaining code so much as eliminating unnecessary
logic as early as possible.” – P. J. Plauger

• YAGNI

•  “The Simplest Thing That Could Possibly Work”

Simplicity

The Importance of Elegance

• Elegance = Simplicity
•  no cruft
•  not cryptic

• Elegance/Simplicity accommodates the humans that must
read and maintain code.

Simplicity

The Importance of Elegance

•  “Users … are indifferent to the need for elegance – until
they later get bitten by its lack. Programs silt up over time.
The cleaner you make them up front, the longer they last.”
– P. J. Plauger

Simplicity

“Architecture degradation begins simply enough. When
market pressures for key features are high and the
needed capabilities to implement them are missing, an
otherwise sensible engineering manager may be tempted
to coerce the development team into implementing the
requested features without the requisite architectural
capabilities.”

-- Luke Hohmann, Beyond Software Architecture

The Degradation of Software Quality

Simplicity

Technical Debt

• Market and budget pressures may “require”
cutting corners

• Changing existing code to meet changing requirements
can introduce “design smells”

•  These constitute a “technical debt”
•  The software is not in a state suitable for long-term maintenance
•  Leaving these debts “unpaid” results in Software Entropy
•  Such systems are abandoned before their time

Simplicity

The Need for Refactoring

• Restores Simplicity
•  “clean code”

•  “Post Release Entropy Reduction”
•  Will see later in “Applying Design Principles”

Simplicity

Measuring Simplicity

•  “The fastest way to discover whether or not you have
invented a simple program structure is to try to describe it
in completely readable terms… if you discover that there
is no simple way of describing what you intend to do, then
you should probably look for some other way of doing it.”

– Per Brinch Hansen

•  “If we can’t explain a concept to college freshmen, we
really don’t understand it.”

– Richard Feynman

Simplicity

Summary of Fundamentals

•  “Modularity is the property of a system that has been
decomposed into a set of cohesive and loosely coupled
modules”

• Strive for Modularity

THE S.O.L.I.D. PRINCIPLES
OF OO DESIGN

“Object-orientation is fundamentally a set of
design principles, such as the separation of
layers and modelling the abstraction of the
business. It is possible to make use of these
principles at a variety of levels: from the high-
level business capabilities of the system to the
low-level technological implementation. The
greatest benefit comes when the principles are
consistently applied at each of these levels.”

– CSC Report

SOLID

Design Smells
-- Robert C. Martin (aka Uncle Bob)

• You usually can tell when a design is poor…

• Rigidity – one change leads to (too) many others (ripple effect)
•  Fragility – changing one component breaks unrelated components
•  Immobility – can’t separate components for reuse (tangled mess)
• Viscosity – hard to do things right (code inertia)
• Needless Complexity – infrastructure that adds no benefit
• Needless Repetition – DRY violations
• Opacity – hard to understand; poor expression of purpose/intent

SOLID

S.O.L.I.D. Principles
-- Uncle Bob

• Single Responsibility Principle

• Open-Closed Principle

•  Liskov Substitution Principle

•  Interface Segregation Principle

• Dependency Inversion Principle

SOLID

Single Responsibility Principle (SRP)

•  Intuitively, this is just a cool name for cohesion

• Robert Martin gives it a different slant:
•  “A class should have only one reason to change”

• Or more explicitly:
•  “Gather together those things that change for the same reason,

and separate those things that change for different reasons.”

•  If you find that you are changing a class for seemingly
unrelated reasons, your class may not be cohesive
•  i.e., your code is Fragile

SOLID

SRP Example
From “97 Things Every Programmer Should Know”

• A very common design
• What would cause changes to this code?

public class Employee {
 public Money calculatePay() …
 public String reportHours() …
 public void save() …
}

SOLID

SRP: Redesigning Employee

• Separate components:
•  business rules
•  reporting
•  persistence

public class Employee {
 public Money calculatePay() …
}
public class EmployeeReporter {
 public String reportHours() …
}
public class EmployeeRepository {
 public void save() …
}

SOLID

Open-Closed Principle (OCP)
-- Bertrand Meyer

•  “Software entities should be open for extension but closed
for modification”

• Extend software with new abstractions
•  not by changing existing code
•  Otherwise your code smells of Rigidity

•  Following the OCP:
•  program to an interface
•  the Decorator Pattern

SOLID

OCP Violation
From “Head First Design Patterns”

• Consider a GUI type named Window
•  Unadorned, but functional

• Now suppose we want some more full-featured windows
•  Bordered, scrollable, etc.

• How do we design this?

SOLID

OO Design 101

• A BorderedWindow is most assuredly a Window
•  Sounds like an “is-a” to me!

• Ditto ScrollableWindow
•  Sort of obvious, no?

SOLID

A Simple Hierarchy

Window

BorderedWindow ScrollableWindow

BorderedScrollableWindow

SOLID

Evaluating Our Design

•  Ignore details of multiple inheritance
•  We can always work around that

• Any other problems?

SOLID

Problem #1

•  The subclasses have operations that the Window
superclass doesn’t
•  scroll, for example
•  Not completely an “is-a”

•  But it isn’t unusual for a subclass to add operations; no biggie

• We could put these methods in Window
•  But they’d be no-ops in the subclasses that don’t use them
•  Someone isn’t encapsulating variation!

SOLID

Problem #2

• What if we need to add another important, independent
windowing feature?
•  WhizbangWindow

• What impact does this have on the hierarchy?

SOLID

Hierarchical “Progress”
Window

BorderedWindow ScrollableWindow

BorderedScrollableWindow

WhizbangWindow

WhizbangBorderedWindow

WhizbangScrollableWindow

WhizbangBorderedScrollableWindow

SOLID

Definitely Counting Classes

•  1 (= C(3,0)) for the root
•  3 (= C(3,1)) for the first row

•  Single-featured

•  3 (= C(3,2)) for the second “row”
•  Double-featured

•  1 (= C(3,3)) for the leaf
•  All three

•  Total of 8

SOLID

Looking Ahead

• C(n,0) + C(n,n-1) + … + C(n,1) + C(n,0)

• Equals 2n

• Can anyone say “combinatorial explosion”?

SOLID

Starbuzz Coffee in HFDP

• Has 4 concrete specializations of the Beverage type
•  HouseBlend, DarkRoast, Decaf, Espresso

• Also, there are four “features” that can adorn these drinks
•  SteamedMilk, Soy, Mocha, WhippedMilk

•  4 * 24 = 64 clunky classes to look forward to!

SOLID

Another Attempt

•  These “features” (condiments) really feel like attributes,
don’t they?

• So let’s just move them to Beverage

•  The concrete classes can compute the correct cost
•  See next slide

SOLID

A Better Hierarchy?

+cost()
+hasMilk()
+setMilk()
+hasSoy()
+setSoy()
+hasMocha()
+setMocha()
+hasWhip()
+setWhip()

-milk
-soy
-mocha
-whip

Beverage

+cost()

HouseBlend

+cost()

DarkRoast

+cost()

Decaf

+cost()

Espresso

SOLID

Evaluating Take #2

• Beverage.cost() must check for the presence of each
condiment

• As new condiments arrive, Beverage’s code must change
noticeably
•  New fields and methods, additional processing

• We would rather be able to add new condiments without
changing Beverage at all!
•  “Separate what varies”
•  At runtime!

SOLID

Evaluating Take #2
continued

• A new beverage may arrive that does not accommodate
all condiments
•  Who ever heard of mocha tea?

• So we may find ourselves removing functionality in a
derived class
•  Violates “is-a”
•  Can even result in repeated code

•  As many “no-ops” will pop up

SOLID

Using the Open-Closed Principle

• Extend the class; don’t change its code

•  The Decorator Design Pattern fits here

SOLID

The Decorator Design Pattern
•  Intent:

•  Add additional responsibilities to an object dynamically.

• Context:
•  Applies when clients program to an abstraction. A decorator can be

used in the same way as its subject. The set of additional
responsibilities can be open-ended. Existing subject code does not
change. Multiple decorators can be combined sequentially.

• Solution:
•  The Decorator implements the same interface as the abstraction. It

manages a concrete instance of the abstraction via composition,
and adds additional functionality. It calls the managed object’s
methods and combines the result with the additional functionality.

SOLID

Class Sketch

+responsibility()

Component

+responsibility()

ConcreteComponent

+responsibility()
+newResponsibility1()

-component : Component
ConcreteDecorator1

+responsibility()
+newResponsibility2()

-component : Component
ConcreteDecorator2

Decorator

ConcreteDecorator2.responsibility()
calls component's responsibility() and
its own newResponsibility2(). The
latter function is also available
independently.

 Sometimes optional

SOLID

Object Sketch

aDecorator2 : ConcreteDecorator2 aDecorator1 : ConcreteDecorator1 aComponent : Component

SOLID

Decorators and StarBuzz
Object Sketch View

aWhip aMocha aDarkRoast

SOLID

The Liskov Substitution Principle

•  “Let q(x) be a property provable about objects x of type T.
Then q(y) should be true for objects y of type S where S is
a subtype of T.”

• Derived objects should be substitutable base objects
•  because of the “is-a” relationship

•  This principle must be followed when overriding functions
•  Derived classes must not change the “rules of the game”

SOLID

Abstractions and Inheritance
•  “Contracts” are set by the base class interface

•  Derived classes must obey the base contract

• Using a contractor-customer analogy:
•  Subcontractors must not charge more than originally agreed upon
•  Subcontractors must deliver at least what was agreed upon

• Clients program to the contract
•  By using and understanding the base class interface and its

conditions

137 SOLID

Sample Contract Specification

int f(x)
Base

int f(x)
Derived

precondition:
x is an odd integer

postcondition:
returns an even integer

precondition:
x is an integer

postcondition:
returns 8

SOLID

(relax) (strengthen)

Contract Conditions and Inheritance

• Preconditions are contravariant
•  e.g., assumptions about method arguments
•  they can be relaxed in derived classes
•  but not made more strict

• Postconditions are covariant
•  e.g., assumptions about return values, exceptions thrown
•  they can be strengthened in derived classes
•  but not weakened

•  “Require no more; Promise no less”

SOLID

The Problem with Fat Interfaces

•  They try to be “all things to all people”
•  “Interface Pollution”

• Design Smells
•  Rigidity – clients dependent on only part of the functionality are

affected when other parts change
•  Immobility – hard to disentangle functionality into independent,

reusable components
•  Needless Complexity – Unused functionality

SOLID

The Interface Segregation Principle (ISP)
-- Robert C. Martin

•  “Many client specific interfaces are better than one
general purpose interface”
•  Fat interfaces are bad (“Interface Pollution”)
•  “Separate clients means separate interfaces”

•  “Clients should not be forced to depend on methods that
they do not use”

SOLID

ISP Violation
Adapted from oodesign.com

eat()
work()

IWorker

Worker SuperWorker

Manager

Robot?

Where does the Robot fit?
IWorker is not cohesive in this context.

SOLID

A Better Design
Separate Interfaces for Separate Clients

Worker SuperWorker

Manager

work()
iWorkable

IWorker

eat()
IFeedable

Robot

SOLID

Dependency Inversion Principle
-- Robert C. Martin

• High-level modules should not depend on low-level
modules
•  Both should depend on abstractions

• Abstractions should not depend on details
•  Details should depend on abstractions
•  Program to the “metaphor”

• Why?
•  Clients of abstractions are insulated from changes
•  Reuse happens at higher levels, so keep things clean

SOLID

Another DIP Violation

anApplication

Square

Circle

«interface»
Shape

creates

SOLID

A Better Shape Scenario

anApplication

Square Circle

«interface»
Shape

creates«interface»
ShapeFactory

ShapeFactory
Implementation

creates

SOLID

3-tier Architecture

«subsystem»
Presentation

«subsystem»
Business Objects

«subsystem»
Database

SOLID

N-tier Architecture
Critique

• Appears to violate the DIP

•  This is solved by having high-level modules write to an
abstraction of its lower-level service module
•  So implementation can vary and not disturb the high-level client

•  (See next slide)

SOLID

Following the DIP

«subsystem»
Presentation

«interface»
Presentation
Service
Interface

«subsystem»
Business
Objects

«interface»
Business
Objects
Service
Interface

«subsystem»
Database

SOLID

“Program to
an interface!”

APPLYING DESIGN
PRINCIPLES

It’s All About Balance

• You don’t use a principle just because you can
•  use it only when it applies
•  to maximize cohesion, maintain simplicity

•  “Overconformance” to principle is not a virtue
•  and creates needless complexity

• Applying a principle is often a natural consequence of
incremental development or evolving requirements
•  “Design Smells” appear with code modification

Applications

Removing Design Smells

•  1) Detect the Smell

•  2) Discover the violated principle(s)

•  3) Redesign according to the principle(s)

Applications

Practicing Simplicity

•  “Once you appreciate the value of description as an early
warning signal of unnecessary complexity it becomes self-
evident that program structures should be described
(without detail) before they are built and should be
described by the designer (and not by anybody else).
Programming is the art of writing essays in crystal clear
prose and making them executable.”

– Per Brinch Hansen

Simplicity

An Application Principle

•  “A complex system that works is invariably found to have
evolved from a simple system that worked… A complex
system designed from scratch never works and cannot be
patched up to make it work. You have to start over,
beginning with a working simple system.”

— Gall, J. How Systems Really Work and How They Fail,
1986.

Stream of Prototypes

• Design and Implement a small subset first

• Repeat…
•  Iterative Development
•  Evolving Design Decisions

•  “The purpose of the Evolutionary Phase is to grow and
change the implementation through successive
refinement, ultimately leading to the production system”
— Booch

Things to Minimize
• Coupling

• Non-local data

• Scope

•  Lifetime
•  initialize late; destroy early

• Number of Parameters

• Number of Methods

Applications

Technical Debts Interact
-- Alistair Cockburn

•  First maintenance visit: 1 + u

• Second visit: 1 + u + v + uv (interaction)
•  approximates 1 + 2u + u2 = (1 + u)2

•  Third visit: 1 + u + v + w + uv + uw + vw + uvw
•  approximates 1 + 3u + 3u2 + u3 = (1 + u)3

Applications

Alistair Cockburn ©Humans and Technology, Inc., 2003 Slide 1

Changes slow the
business down!

Too expensive to change (dead product)!

Poor code quality penalizes exponentially;
Cleaning up penalizes linearly.

Cost
to
update
the
software

Cleaning up:
cost = r (“refactoring to clean code”)
cumulative cost = 1+r+r+r+...

= 1 + n*r

Not cleaning up:
cost = u (“understanding the worse code”)
cumulative cost = (1)(1+u)(1+u)(1+u)... = (1 + u)n

Time (actually, number of changes made)

Applications

Post-Release Entropy Reduction
-- Luke Hohmann

• No time for refactoring near release
•  Quick hacks pay off near release time
•  Market windows are important

•  There must be time to refactor after release
•  Otherwise entropy kills you prematurely
•  Yes, there is a short-term cost
•  The long-term reduction of technical debt is worth it!

Applications

Code Quality Without PRER
-- Randy Stafford

Release 1 Release 2 Release 3

Applications

Code Quality With PRER

Release 1 Release 2 Release 3

Applications

First Things First

• Principle: Design for normal usage first; design exception
handling later

The Need for a Chief Architect
•  “An architect determines where the walls go; an engineer

determines how strong to make the walls; a contractor
builds the walls.” -- Allen Holub

•  “The architect owns the vision of what the new kind of
system represents… is the owner of the overall concept of
the system … and of the set of design principles needed
to implement that concept.”

•  “A good architect knows the trades and ‘walks the halls’
during construction and finishing to ensure that the same
design principles are being enforced at all levels.”

•  -- CSC Report

References

More References

•  Esther Schindler, “5 Things Grady Booch Has Learned About
Complex Software Systems”, CIO.com, May 29, 2008

•  Per Brinch Hansen, Architecture of Concurrent Programs, Prentice-
Hall, 1977.

•  Tom Cargill, “Localized Ownership: Managing Dynamic Objects in
C++”, in J. Vlissides, J. Coplien, and N. Kerth, eds., Patterns
Languages of Program Design, vol 2, Addison-Wesley, 1996.

•  Edsger W. Dijkstra, Selected Writings on Computing: A Personal
Perspective, Springer-Verlag, 1982. ISBN 0–387–90652–5.

•  Christopher Strachey, Fundamental Concepts in Programming
Languages, Higher-Order and Symbolic Computation, 13, 11–49,
2000

