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Foreword
Computers are everywhere these days—from our phones, to our cars, to appliances in our homes.
Indeed, computers, and the programs that run on them, influence every aspect of our lives. It’s difficult
to imagine what the world was like without them—the entire field of computing is less than one
hundred years old. The advances in computing are truly mind-boggling.

Yet none of this would have been possible without a sound theoretical foundation. Alan Turing,
Alonzo Church, John vonNeumann, and others developed themathematical formalisms thatmake our
modern programming languages possible. All modern programming languages, from popular Python
to the venerable C programming language, have their roots therein.

The theory of computation doesn’t have to be hard to understand; it has an elegance and simplicity
that makes it approachable. In this way, it is much like Einstein’s theory of special relativity, embodied
by the famous equation, E = mc2. But in both cases, the simplicity of the expression of the theory
veils the years of toil required to derive the theory. Fortunately, one can learn the theory without all
the hard work of initial derivation. We truly stand on the shoulders of giants.

Many computer science students find this topic inscrutable, however. Here is where this book comes
in: it presents the theory in a logical, gentle manner, with applications, making it much easier to
understand. As I read a draft of the book, I actually became excited about the presentation of the
material. At long last, there is a book that lays out the theory in a way that it should be. And the
results speak for themselves. When Professor Chuck Allison began using drafts of this book in his
classes, student performance on assignments and exams went up significantly.

Some students may wonder why they should even bother learning the theory of computation. “After
all,” they point out, “I’m just going to write application code for websites and mobile apps. I don’t
need all this theory stuff.” That’s a fair question. I freely admit that in my twenty years of industry
programming, I never wrote a Turing machine. But it was a bit surprising how many times I
found myself writing little programming languages and programs to interpret and process them.
Foundational computing theory gives you the tools that enable you to do things like that. In addition,
most of my industry work was in communication systems, where the software consists of extremely
complex finite-state machines, which this book covers in some depth.

As you approach this book, you will notice that it starts very simply. Each concept is liberally
illustrated with examples and visualizations. As it progresses, the examples gradually become more
complex. When you reach the end, you will likely be surprised at the complexity of the examples you
will be able to understand. And that is the essence of learning: through study and practice, you can
accomplish things you never thought possible. Enjoy the journey.

– Neil Harrison, Computer Science Department Chair, Utah Valley University



Preface
I am personally convinced that any science progresses as much by the writing of better
textbooks as by the generation of new knowledge, because good textbooks are what allows
the next generation to learn the older stuff quickly and well so we can move on to
interesting new things instead of having to painstakingly decipher the discoveries of our
forebears.

– Jaap Weel

I wrote this book to make the fundamentals of the theory of computation more accessible to the
current generation of undergraduate computer science students. Over the course of twenty years of
teaching this subject at Utah Valley University (UVU) in Orem, Utah, I have noticed that computer
science undergraduates are not as mathematically sophisticated as in the early days of computer
science education, when CS students mostly came frommathematics and the sciences. Yet the demand
for CS graduates has increased dramatically, with enrollments at UVU and elsewhere following
suit. Furthermore, the areas where computing applies to daily life have broadened to the point that
society can’t seem to do without the convenience that computerized devices afford. CS graduates can
make a noticeable contribution to the world of computing work without as much mastery of formal
mathematics as was required in times past.

Yet it is crucial that a practicing software engineer understand the nature and limits of computation;
the computing practitioner must know what software can and can’t do. In this book, I attempt to
illuminate the fundamentals of computing for as large an audience as possible. The key results of
the theory of computation are covered with numerous examples, and sometimes even with working
Python programs, while at the same time achieving a measure of rigor with only a minimum of
mathematical formalism. Formal proofs appear infrequently, but constructive arguments abound. I
use recursive definitions, but use mathematical induction only twice. While mathematical notation
appears as needed, I use visual representations profusely to illustrate concepts.

I assume that readers have basic programming knowledge as one would encounter in typical CS1
and CS2 courses, and familiarity with introductory discrete mathematics, including sets, relations,
functions, modular arithmetic, the notion of a logarithm, first-order predicate logic, and the structure
of simple, directed graphs.

The emphasis is on the structure, properties, and application of formal languages, along with an
introductory exposure to computability. Complexity theory is not covered, as it is the topic of a
separate undergraduate course on algorithms at UVU. Parsing is only touched on since that topic
is covered exhaustively in our compiler course required of CS majors.

I use a uniform approach to transition graphs for the different types of finite-state machines so
students feel at home when new features are added. For example, for pushdown automata, I use the



Preface iii

same graph notation as for finite automata, only adding stack operations, and only pop one symbol at
a time. In addition, when stack start symbols are used, I explicitly push them in the graph, minimizing
changes to what students are already accustomed to with finite automata. Furthermore, I require both
final/accepting states and an empty stack simultaneously for PDA acceptance. This avoids needless
discussion of how to convert acceptance by empty stack to and from acceptance by accepting state
only, andmakes it easier to show that deterministic pushdown automata are closed under complement,
as well as making converting PDAs to context-free grammars less exceptional.

Several programming examples appear, and a small number of modest programming projects appear
in the exercises. I use Python 3. Python is among the most readable of programming languages; it is
often referred to as “executable pseudocode.” It is in widespread use in many computing domains and
is universally available. An effective innovation is the use of Python programs to teach reductions of
one unsolvable problem to another in a compact, introductory chapter on computability.

I wish to acknowledge the helpful comments of reviewers Chad Ackley, Matt Bailey, Tyler Barney,
Eric Belliston, Kevin Black, Curtis Boland, Alan Chavez, Josh Chevrier, Thomas Christiansen,
Cameron Clay, Ethan Clegg, Brennen Davis, Daniel Dayley, Michael Elliott, Ryan Ferguson, Landon
Francis, Phillip Goettman, Joshua Gray, Drake Harper, Quinn Heap, Jace Henwood, Gregory Hodgson,
Chad Holt, Preston Hrubes, Trent Hudgens, Jared Jacobsen, Joel Johnson, Josh Jones, Tyson Jones,
Jenny Karlsson, Hunter Keating, Ethan Kikuchi, Jared Leishman, Ryan Lever, Caleb MacDonald, Na-
talie Madsen, NathanMadsen,WesleyMangrum, CliftonMayhew, JuanMedrano, Michael Mickelson,
James Miles, LuAnne Mitchell, Kelly Nicholes, Dakota Nielsen, Eric Nielson, Kris Olson, Timothy
Marc Owens, Kailee Parkinson, Cody Powell, Jake Prestwich, Zachary Price, Andrew Ripley, Devin
Rowley, Drew Royster, Gail Sanders, Vani Satyanarayan, Blaine Sorenson, Isaac Stark, Benjamin
Thornhill, Alexander Vaughn, and Jeremy Warren, all UVU alumni. A special thanks to Dr. Keith B.
Olson, my long-time colleague and fellow mathematician, for his edits, insights, and encouragement.
I also drew inspiration from Dr. Peter J. Downey, who taught me this subject decades ago in CS 473
at the University of Arizona.

I am indebted to Doug Hamilton for the cover art and to Alexa Schulte for assistance in the cover
design.

I hope CS students will find this book helpful in understanding what computers can and cannot do,
in gaining insights into crafting programs for problems that involve various states or text processing,
and in comprehending more fully the nature of computation.

- Chuck Allison, 2016–2022



1. Introduction
There is nothing so practical as a good theory.

– Kurt Lewin

“Charlecote Park Formal Gardens” by Tony Hisgett, licensed under CC BY 2.0

Computer science predates computers. The theoretical foundations of computation were laid long
before the first computer was built¹. What we now call the theory of computation was developed in
the mid-twentieth century by researchers seeking a systematic method of solving all mathematical
problems². Their efforts led to the design of digital computers, and equally importantly, revealed what
automatic computation cannot do. But first, let’s be clear on exactly what we mean by computation.

A computation is the execution of a self-contained procedure that processes input, unaided by outside
intervention once it starts, and, if all goes well, eventually halts, yielding output that corresponds to
the input given. For example, running a compiler on source code as input and receiving an executable
file as output is a computation. A computation that always halts is called an algorithm. (Note: We will
see computations that do not always halt.) The common metaphor for such a procedure is a “black
box”, as depicted in Figure 1–1.

Figure 1–1: Computation as a Black Box

¹Babbage’s Analytical engine of 1837 is considered the first manifestation of a design with the computational power of
general-purpose computers. The idea of an algorithm, which is the essence of computer science, is centuries old, and many
automated mechanical processes got their start during the first Industrial Revolution. Here we are mainly interested in ideas
more abstract, as in software.

²It is interesting that their research discovered that no such method exists!
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For our purposes, a computation invokes a procedure that represents some underlying mathematical
model—a computingmechanism that we call an abstractmachine³. A computation requires a symbolic
notation, or language, to express it. A formal language is a set of stringswith some inherent structure.

In computer programming, we need to agree on which strings of symbols are valid for describing
programs and data. Source code is just a string of symbols fed into a compiler or interpreter and
needs to conform to the syntax of the programming language used. Ultimately, input, output, and
procedures appear as streams of symbols from some alphabet. For many programming languages, the
alphabet is the set of Unicode characters. For a computer, it is the two-symbol alphabet {0, 1}. The
fact that we think of the symbols 0 and 1 as numbers is immaterial. We are not concerned in this book
about the notion of data types; we just process strings, usually one symbol at a time. With this simple
approach, one can grasp all that is possible by automatic computation. Types are abstractions built
upon this elementary foundation.

1.1 Formal Languages

A formal language is a set of strings formed with symbols from some finite alphabet. In studying
formal languages, we are interested in the many ways symbols may be validly combined to form
valid strings for a given context. We talk about tokens (or words), sentences (or phrases, which are
sequences of tokens), and language structure (how strings may be properly arranged). We do not
concern ourselves here with the semantics of the words—only the structure of the strings.

A formal language is a set of strings formed with symbols from some finite alphabet.

To illustrate, consider the simple alphabet⁴Σ = {a, b}. Strings such as bab and abbaab are among the
infinite number of strings that can be formed with these two symbols. We can also choose none of the
symbols, resulting in the empty string (which has length 0), often represented by the string literal ""
in programming languages, but which we denote in this book by the lowercase Greek letter, lambda:
λ. The set of all possible strings using this alphabet is the infinite set depicted below.

{λ, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb, aaaa, ...}
Observe the natural way to enumerate this set, which we call canonical order. Strings are grouped
according to length, the groups are arranged in increasing length, and the strings within each group
are alphabetized (i.e., they appear in lexicographical order based on the alphabet used (a comes before
b etc.).

³A theoretical model of a computing system. For example, the model for a simple calculator is the basic operations of
arithmetic. The abstract machines we cover in this book are various types of finite automata (explained in section 1.2).

⁴It is conventional to use the capital Greek letter Σ (Sigma) as an identifier for the current alphabet. We will also use the
Greek letters λ (lambda), δ (delta) and Γ (uppercase gamma) in this book, as well as φ (phi) for the empty set.
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This set is formed by considering all possible ways of concatenating any number of a’s and b’s together.
The set of all possible concatenations of elements of an arbitrary set of symbols, S, is called the Kleene
star⁵ of that set, and is denoted by S∗. Concatenation of strings is a fundamental operation on formal
languages. Since a formal language is a set of strings over some alphabet, a language is therefore a
subset of its alphabet’s Kleene star.

A formal language over the alphabet Σ is a subset of Σ∗.

Suppose the variable x represents the string bab and y stands for abbaab. The table below uses these
variables to illustrate common operations on strings in a formal language.

Table 1–1: Fundamental Language Operations

Operation Name Example
|x| Length |x| = 3
xy Concatenation xy = bababbaab
xn Repetition x3 = babbabbab, x0 = λ
x∗ Kleene Star x∗ = {λ, bab, babbab, ...}
xR Reversal yR = baabba

Since languages are sets, the usual set operations such as union, intersection, difference, complement,
etc., also apply.

Example 1–1

Suppose we want to form {bab, abbaab}∗, which is the Kleene star of the strings denoted by x and
y above. As always, lambda is the first element of a Kleene star. This is followed by all possible
concatenations of the original strings, in canonical order:

{λ, bab, abbaab, babbab, abbaabbab, bababbaab, babbabbab,…}
The string bab precedes abbaab in S∗ because of its length, not because it appears first in the original
set (sets, generally, are unordered, but a canonical ordering is by nature an ordered set). We use the
alphabet to determine the lexicographical ordering within each length-group.

⁵Usually pronounced “KLAY-nee.” Also called “Kleene closure” or “star closure”. Note that aa∗ = a∗a for any symbol
a. See https://en.wikipedia.org/wiki/Stephen_Cole_Kleene. A Kleene star allows concatenating zero elements of a set, so λ is
always present. A shorthand for “one or more concatenations” uses the plus sign as an exponent. In the case of x in Table 1–1,
x+ = xx∗ = x∗x = {bab, babbab, babbabbab, ...}.
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Example 1–2

Consider the language, Le, consisting of all even-length strings over the alphabet Σ = {a, b}:

Le = {λ, aa, ab, ba, bb, aaaa, aaab, aaba, aabb, abaa, · · · }
Anotherway to describe this language is the Kleene star of the strings from the setS = {aa, ab, ba, bb}.
In other words, Le = S∗. It is obvious that any string in S∗ has even length. Take a moment to verify
that any even-length string of a’s and b’s comes from repeated concatenations of elements of S.

It is possible to generate all the strings in a formal language by using a set of “substitution rules” (aka
“rewrite rules”) known as a formal grammar. A formal grammar consists of substitution rules that
stand for substrings⁶ that form part of a complete string in a language. A grammar for the language
Le is:

E → aO | bO | λ
O → aE | bE

Since the variable E appears first, it is the start variable. The vertical bar is an alternation symbol
that separates the various ways to substitute for the variable on the left-hand side, so E has three
substitution rules (E → aO,E → bO,E → λ) and O has two (O → aE,O → bE). To generate a
string, begin by choosing a right-hand side to replace the start variable, E, then continue substituting
for variables at will, finally ending by choosing a rule containing no variables (in this case, the rule
E → λ). We can, for example, use this grammar to derive the string baaa as follows⁷:

E ⇒ bO ⇒ baE ⇒ baaO ⇒ baaaE ⇒ baaaλ⇒ baaa

Since lambda is the empty string, it disappears in concatenation. When all we have left are symbols
of the alphabet, we are done generating a string.

Another grammar forLe comes fromusing the elements of the set S fromExample 1–1, {aa, ab, ba, bb}:

S → aaS | abS | baS | bbS | λ
Using this grammar, we can derive the string baaa as follows:

S ⇒ baS ⇒ baaaS ⇒ baaa

⁶These intermediate substrings are analogous to phrases of a sentence, so the grammars we study are also known as
phrase-structure grammars.

⁷In this book we use the single arrow,→, when defining grammar rules, and the double arrow,⇒, when deriving a string
using those rules.
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Key Terms
computation • abstract machine • algorithm • formal language • alphabet • lambda (λ) • Kleene
star • canonical order • formal grammar

1.2 Finite State Machines

We design our computations to only consider one symbol at a time, making decisions based only on
the current “state” and the current input symbol. For the languageLe seen earlier, we need only know
whether or not the number of symbols consumed at any point is even. Since integers are either even
or odd, we have only two states (evenness vs. oddness) to consider. The transition graph in Figure
1–2 depicts a 2-state, abstract machine that will solve our problem; we have only to observe whether
or not an input string causes the machine to halt in the “even” state, E.

Figure 1–2: A transition graph for a machine that accepts Le

E is the start state, indicated by an incoming arrow from “out of nowhere.” The edges between states
E and O indicate that whenever an a or b is read, the machine switches state. We combine both a and
b on the same edge instead of having separate edges for each symbol to keep the diagram simple. The
double circle for state E indicates that it is an accepting, or final state, meaning that if processing an
entire input string ends in that state, then that string is accepted as part of the language. This machine
processes the input string abba as follows:

Table 1–2: Processing the string abba

State Remaining Input
E abba
O bba
E ba
O a
E (accept)

Having terminated in state E, the string is accepted. A straightforward Python implementation of this
machine follows.
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Simulating the machine in Figure 1–2

def evenab(s):

state = 'E' # Start state

for c in s: # Process 1 letter at a time

match state:

case 'E':

state = 'O'

case 'O':

state = 'E'

return 'accepted' if state == 'E' else 'rejected'

This machine accepts the empty string because the start state is also an accepting state. This makes
sense in this case, since zero is an even number.

Whether a string is accepted by a finite state machine depends on ending in an accepting
state when the last symbol of the string has been read.

Example 1–3

The following machine accepts all and only those strings over the alphabet Σ = {0, 1} that end with
the symbol 1.

Figure 1–3: Accepts strings ending in 1

Every time a 1 is read, the machine moves to the accepting state. Otherwise it moves to state 0.

Finite state machines, also known as finite automata (singular: automaton), can give more varied
output than just accept or reject, as illustrated in the next example.

Example 1–4

Removing comments from source code provides an instructive example of an automaton that emits
non-trivial output. Suppose a hypothetical language allows comments delimited by a single dollar-
sign symbol at each end of a comment’s text. An automaton that ignores such comments, but lets
uncommented text through as output, appears in Figure 1–4 below.
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Figure 1-4: State machine to remove $-comments

First, notice that some transition edges have a slash that separates an input symbol from an output
symbol; edges without a slash emit no output. (Note: The edges between states N and S have a
double-quote symbol as both input and output; the slash is not being quoted.) We use a question
mark as a special “wildcard” identifier to represent “the current symbol being processed other than
the characters implicitly handled by that state”—in this case, other than a dollar sign or double-quote.
The start state, N, indicates that we are in “normal” mode, meaning that we are outside of a comment
or a string, so we just echo the input symbol to the output stream. When we read a dollar sign outside
of a quoted string, we transition to state C, indicating that we are now in a comment. We output
nothing until after we return to the start state, having read the comment’s closing $. The machine
operates similarly for quotes and the state S, except that everything is printed (quotes included). It is
not possible to be in comment mode and string mode simultaneously.

Suppose the string My $fine $fellow, you owe "$1.50" is fed into this machine. Executionwould
then proceed as follows (dashes are used to make spaces visible):

State Remaining Input Accumulated Output
N My-$fine-$fellow,-you-owe-“$1.50”
N y-$fine-$fellow,-you-owe-“$1.50” M
N -$fine-$fellow,-you-owe-“$1.50” My
N $fine-$fellow,-you-owe-“$1.50” My-
C fine-$fellow,-you-owe-“$1.50” My-
C ine-$fellow,-you-owe-“$1.50” My-
C ne-$fellow,-you-owe-“$1.50” My-
C e-$fellow,-you-owe-“$1.50” My-
C -$fellow,-you-owe-“$1.50” My-
C $fellow,-you-owe-“$1.50” My-
N fellow,-you-owe-“$1.50” My-
N ellow,-you-owe-“$1.50” My-f
N llow,-you-owe-“$1.50” My-fe
N low,-you-owe-“$1.50” My-fel
N ow,-you-owe-“$1.50” My-fell
N w,-you-owe-“$1.50” My-fello
N ,-you-owe-“$1.50” My-fellow
N -you-owe-“$1.50” My-fellow,
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State Remaining Input Accumulated Output
N you-owe-“$1.50” My-fellow,-
N ou-owe-“$1.50” My-fellow,-y
N u-owe-“$1.50” My-fellow,-yo
N -owe-“$1.50” My-fellow,-you
N owe-“$1.50” My-fellow,-you-
N we-“$1.50” My-fellow,-you-o
N e-“$1.50” My-fellow,-you-ow
N -“$1.50” My-fellow,-you-owe
N “$1.50” My-fellow,-you-owe-
S $1.50” My-fellow,-you-owe-“
S 1.50” My-fellow,-you-owe-“$
S .50” My-fellow,-you-owe-“$1
S 50” My-fellow,-you-owe-“$1.
S 0” My-fellow,-you-owe-“$1.5
S ” My-fellow,-you-owe-“$1.50
N My-fellow,-you-owe-“$1.50”

The operation of this machine is also implemented in the following Python code.

Simulates the machine in Figure 1–4

def dollar(inputstr):

output = ""

state = 'N'

for c in inputstr:

match state:

case 'N':

if c == '$':

state = 'C'

else:

output += c

if c == '"':

state = 'S'

case 'C':

if c == '$':

state = 'N'

case 'S':

output += c

if c == '"':

state = 'N'

if state != 'N':

print('Unbalanced delimiters!')

return output

print(dollar('My $fine $fellow, you owe "$1.50"'))
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When executed, this program prints My fellow, you owe "$1.50".

Finite automata apply in many real-life situations. Automatic doors in buildings, vending machines,
etc., all have some notion of state and of changing state depending on input stimuli over time.

Example 1–5

The machine in Figure 1–5 below illustrates how to score a tennis game⁸. Each time a player wins
a volley, the score progresses through the following point-level sequence: love (0), 15, 30, 40, game.
When the score is tied 40–40, it is called a deuce. To win the game from deuce, a player must win two
volleys in a row. Winning the first volley from deuce gives the player the “advantage”, but that player
must win the very next volley to win the game. Otherwise play returns to deuce. This could go on for
some time (observe the cycles between the Deuce state and the advantage states (Ad-) below).

Figure 1–5: Scoring a Game of Tennis

Beginning with the player initially serving, we follow an s-edge if the server wins the point or an
o-edge if the opponent does. There are no out-edges from the states where a player wins, since play
ends at that point.

Example 1-6

The diagram in Figure 1-6 models how vending machines from years past (before they had computer
chips) kept track of the total amount of money entered. For simplicity, we assume that only nickels,
dimes and quarters are accepted and that items cost no more than 50 cents (ignoring any amounts
greater than that). The states represent the cumulative total entered at any given point in time.

⁸Diagram based on material from Jeffrey D. Ullman. Used with permission.
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Figure 1–6: Modeling a Vending Machine

Example 1–7

As a final example⁹, consider the following schematic of an automatic door.

Figure 1–7: A sketch of a 2-way automatic door

This door swings both ways. There are two input stimulus sensors: one when a person walks in from
the front (outside), and another when a person exits from the back (inside). If the control mechanism
polls for input at small, regular time intervals, there are four possible input configurations over time:
front, back, both front and back, and neither front nor back. The door can either be opened-out,
opened-in, or closed, so these are the three states in our model. The “natural state” is for the door
to be closed, so we make that the initial state. We are not testing input strings here, so we have no
accepting state. Figure 1-8 below shows an automaton that guarantees that customers can come and
go without getting hit by the door. When no one is present within sensor range, the neither input
signal closes the door.

⁹Example from Sipser, Introduction to the Theory of Computation, 3rd Ed., Cengage, 2013, p. 32.
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Figure 1–8: Modeling a 2-Way automatic door

Key Terms
state • transition • finite state machine • automaton/automata • transition graph • start/initial state
• final/accepting state

Exercises

1. List in canonical order the first 11 elements of the subset of {0, 1}∗ that are of odd length.
2. List the first 11 elements of S = {aba, ba}∗ in canonical order. (Note: the alphabet here is

{a, b}, but the set S is being operated upon by the Kleene star.)
3. Draw a finite automaton that accepts all the strings of odd length over Σ = {a, b}.
4. Write a formal grammar that generates all strings of odd length over Σ = {a, b}.

Chapter Summary

In essence, computation is the meaningful manipulation of symbols. In this book, we relate compu-
tations to formal languages, since a computation needs a language to describe its input and output,
as well as its operations. Languages can be generated by grammars and recognized by finite-state
machines, also called automata. The theory of computation comprises three major classes of formal
languages along with their associated machines, as shown in the following table.
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As you have seen in this introductory chapter, computation theory is quite practical; it has direct
application in digital design, programming languages, compilers—indeed in numerous contexts where
an automated process exhibits various states over time. It is no wonder computing has become part
of the landscape of our lives. As architect Nicholas Negroponte¹⁰ has said, “Computing is not about
computers anymore. It is about living.”

Our chief interest is to understand what can be computed in principle, independent of current
technology. In Part 3 of this book we will see that the Turing machine is a complete and universal
model for automatic computation.

Computation is the meaningful manipulation of symbols. Our chief interest is to under-
stand what can be computed in principle.

¹⁰Being Digital, 1995.
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Diagram from csunplugged.com



2. Finite Automata
Vernon Conway:Why is it so difficult for you to acceptmy orders if you’re just amachine?
Blue Robot : Just a machine? That’s like saying that you are just an ape.
– Automata movie (2014)

“Vintage Pop Machine Innards” by Richard Eriksson, licensed under CC-BY 2.0

Where Are We?

Chapter Objectives

• Design finite automata to solve simple computational problems
• Convert non-deterministic automata to deterministic ones
• Minimize the number of states in a deterministic finite automaton
• Use finite automata to model computations that produce output strings

In this chapter, we look at the class of languages that finite automata accept as well as the computations
that finite automata can perform. Finite automata are especially useful in text processing and digital
circuit design.
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2.1 Deterministic Finite Automata

The automata in Chapter 1 are all deterministic in that there is no ambiguity about which edge to
follow from each state. Deterministic finite automata are also easy to program; simply have a case for
each state, and inside each case, choose the target state corresponding to the current input symbol. In
the next section, we will see how non-deterministic finite automata can also be useful.

Definition 2.1
A deterministic finite automaton (DFA) is a finite state machine consisting of the following:

• Q, a set of states, one of which is the initial (or start) state, and a subset of which are final
(or accepting) states.

• Σ, an alphabet of valid input symbols.
• δ : Q × Σ → Q, a function which, given a state and input symbol, determines the next
state of the machine.

Definition 2.1 is merely a mathematical reformulation of what we already understood a DFA to be
fromChapter 1. The transition function¹, δ, represents the transitions/edges in themachine. The subset
of Q comprising the final states can be empty in the case of machines that produce an output string
instead of a yes-or-no result. There must be exactly one transition out of every state for each symbol
in the alphabet of the DFA.

There must be exactly one transition out of every state for each symbol in the alphabet of
the DFA.

Example 2–1

To illustrate the application of the formal definition of a DFA, consider the DFA in Figure 2–1 below,
which accepts all strings over the alphabet Σ = {a, b} that end with the symbol b.

¹It is customary to use the Greek letter, δ (delta), since it is commonly used in mathematics to denote change, another
name for “transition”.
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Figure 2–1: DFA accepting strings ending with the symbol b

Every time we read a b, for all we know it could be the last symbol in the input string, so we move to
the accepting state q1; otherwise we move to state q0. The formal definition for this DFA is therefore:

• Q = {q0, q1}, where q0 is the initial state and {q1} is the set of final states
• Σ = {a, b}
• δ = {((q0, a), q0), ((q0, b), q1), ((q1, a), q0), ((q1, b), q1)}

Yet a third way to depict a DFA is with a transition table, as follows:

In a transition table, the initial state appears first and a plus sign indicates each final state.

Since tables are a common data structure in programming languages, they offer yet another approach
to implement DFAs in code. The program below uses Python’s dictionary data type to simulate the
transitions in the table above. The dictionary named transitionsmaps each <state,symbol> input
pair to a machine state.

def ends_with_b(s):

transitions = {('q0','a'):'q0', ('q0','b'):'q1',

('q1','a'):'q0', ('q1','b'):'q1'}

state = 'q0'

for c in s:

state = transitions[(state,c)]

return 'accepted' if state == 'q1' else 'rejected'

print(ends_with_b('aabab')) # accepted

print(ends_with_b('aaba')) # rejected

This program is more concise than using if and else statements to check states directly in code as
we did in Chapter 1.
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Example 2–2

Now consider how to construct a DFA that accepts all strings over the alphabet Σ = {a, b} that end
with the substring ab. In cases like this it is often helpful to begin by drawing a “partial machine” that
accepts only the required substring:

Figure 2–2: Partial DFA accepting strings ending with ab

If we are in state q0 and read a b, we should stay in q0, since we need an a preceding the final b. It
is only when we read an a there that we might have encountered the second-to-the-last symbol in a
valid string. State q1 represents having just read an a, so we’ll stay there when reading consecutive
a’s, hence the loops on states q0 and q1 in Figure 2–3 below. If we read an a in state q2, it could be
the final a before the final b, so we move back to state q1. If we encounter a b in state q2, we need to
start over by moving to q0.

Figure 2–3: Complete DFA accepting strings ending with ab

It is now clear that state q0 represents having read a b that was not preceded by an a.

Example 2–3

To design aDFA that accepts all strings that contain aba as a substring, first construct a partial machine
that accepts only the string aba. (See Figure 2–4 below.)

Figure 2–4: Accepts only aba

You can now complete the DFA by filling in the missing edges (see Figure 2–5).
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Figure 2–5: Accepts strings containing aba

Example 2–4

Now consider how to define a DFA that accepts the complement of the language of Figure 2–5 above
(i.e., strings that do not contain the substring aba). Once state q3 is reached, we know that an aba
has occurred, so if a string never takes us there, it is in the complement of the language. In general,
the complement of language consists of strings that never end in a final state in the original DFA, or,
equivalently, that end only in non-final states. Therefore, to construct a DFA for the complement of a
language, simply invert the acceptability of each state in the original DFA. The machine in Figure
2-6 accepts the complement of the language in the previous example.

Figure 2–6: Accepts strings not containing aba

There is no going back to an accepting state once a string reaches state q3. Such a state is called a dead
state or a jail state. Jail states are common in languages that are complements of other languages—in
other words, when acceptable strings are defined by properties they don’t satisfy.

To recognize the complement of a language, invert the acceptability of each state in a DFA
that accepts the original language.

Example 2–5

Another machine that needs a jail state is found in the language of all strings that begin with an a and
end with a b. If the first symbol is a b, then there is no hope of the machine accepting it. (See Figure
2–7).
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Figure 2–7: A DFA accepting strings starting with a and ending with b

Example 2–6

How would we construct a DFA that accepts strings of zeroes and ones where the next-to-last symbol
is a 1? Such a string must end with either 10 or 11. Since we never know when the next-to-last input
occurs, we need to track those two substrings whenever they occur. See Figure 2–8.

Figure 2–8: Accepts strings with a 1 in the next-to-last position

The state labels reflect the substring just processed that led to each state. Observe how the out-edges
from the accepting states behave. The last symbol read reaching those states becomes the next-to-last
symbol on the subsequent move.

Example 2–7

Now consider how to recognize strings over {0, 1} that end with a 1 in the third-to-last position.
Reading a 1 starts us on a potential accepting path. From there we will read a 0 or 1, at which point
we will have read one of 10 or 11. An acceptable string must be of at least length 3 and end with 100,
101, 110, or 111.
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These possibilities are represented by accepting states in the following machine:

Figure 2–9: A DFA that accepts strings with a 1 in the third-to-last position

Where this machine moves from its accepting states depends on the four possibilities of where the 1’s
occur in the last two symbols read, which this DFA tracks nicely.

Example 2–8

Consider a machine that reads the bits of a binary number, one at a time, left-to-right, to determine
what the modulus (i.e., remainder) of the input number is when divided by 3. We have neither
arithmetic instructions nor auxiliary memory—all we have are states—so we must find a way to keep
track of the modulus as we go. We need three states, therefore, corresponding to the remainders 0, 1,
and 2, with 0 as the initial state (i.e., the number is considered to be zero before any input is consumed).
See Figure 2–10.

Figure 2–10: States representing possible remainders mod 3

How do we track the remainder as we read a single bit-symbol at a time? In the simplest instance,
we can assume that our current number is 0 to start with. Appending a 0 still gives us 00 = 0, so
δ(0, 0) = 0. Appending a 1 gives the number 01 = 1, so δ(0, 1) = 1. If instead the current number
is 1, the machine is in state-1 (since 1 ≡ 1 mod 3 ), then appending a 0 transforms the number
into 102 = 2 ≡ 2 mod 3, so δ(1, 0) = 2. Similarly, appending a 1 gives 112 = 3 ≡ 0 mod 3, so
δ(1, 1) = 0. If the current number is 2 = 102, appending a 0 yields 1002 = 4 ≡ 1 mod 3, while
appending a 1 results in 1012 = 5 ≡ 2 mod 3, so δ(2, 0) = 1 and δ(2, 1) = 2. The following DFA
records all of these results.
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Figure 2–11: DFA whose states identify the residue mod 3 of a binary number

Having established how the machine behaves for the numbers 0, 1, and 2, we now use this information
as a base case to show by induction that the machine is correct for any number. The induction
hypothesis is that when we are in state-0 that the number is congruent to 0 mod 3, and analogously
for states 1 and 2.

To understand how the value of the input number changes as we append the next 0 or 1, consider
how to recognize the number 5, say, which appears as 101 in binary. Reading the bits left-to-right, we
construct this number a symbol at a time as follows:

1. Start with our number, n, say, initialized to 0, and then read the first 1-bit, “appending” it to
our current n. Appending a 1 to a bit string is numerically equivalent to shifting the bits one
position to the left (which is the same as multiplying the number by 2), and then adding the 1,
giving the number 2 · 0 + 1 = 1.

2. Next, we read and append the 0-bit, so we shift left (i.e., multiply the running result by 2) and
add zero, giving 2 · 1 + 0 = 2 = 102.

3. Finally, we append the last 1-bit to obtain 2 · 2 + 1 = 5 = 1012.

To summarize: every time we append a bit, b, we update our number, n, to be 2n+ b, where b is 0 or
1.

We are now able to track the remainders for any bit string. Consider what happens when we are
currently in state-0. By the inductive hypothesis, we know that in this state the number must be a
multiple of 3, because its remainder is 0, therefore, n = 3k for some k. If we append a 0-bit, then the
updated number is n = 2(3k) + 0 = 6k ≡ 0 mod 3, meaning that the number is still a multiple of
3, so we remain in state-0. If instead we append a 1-bit, the number becomes 2(3k) + 1 ≡ 1 mod 3,
so we move to state-1, as shown in Figure 2–12.

Figure 2–12: Adding edges for state-0

If we are in state-1, then n ≡ 1 mod 3 ⇒ n = 3k + 1, for some k, so the results for appending
a 0 are 2(3k + 1) + 0 = 6k + 2 = 3(2k) + 2 ≡ 2 mod 3, and when appending a 1 we get
2(3k+1)+1 = 6k+3 = 3(2k+1) ≡ 0 mod 3. Figure 2–13 updates our working DFA accordingly.
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Figure 2–13: Adding edges for state-1

In state-2 we know that n = 3k+2, so the results become 2(3k+2)+0 = 6k+4 = 3(2k+1)+1 ≡ 1
mod 3 for appending a 0, and appending a 1 gives 2(3k + 2) + 1 = 6k + 5 = 3(2k + 1) + 2 ≡ 2
mod 3. This is consistent with the DFA we first saw in Figure 2–11.

All the languages we have seen so far are examples of what we call regular languages, which are
simply those languages that are accepted by some DFA.

Definition 2.2
A regular language is a formal language for which there exists a deterministic finite automaton
that accepts all and only those strings in the language.

Key Terms
determinism • DFA • transition function • jail state • complement • regular language

Exercises

1. Draw a transition graph for the following DFA.
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2. Draw transition graphs for DFAs that accept the following languages:
a. Strings over Σ = {0, 1} that begin with 1 and end with 0.
b. Strings over Σ = {a, b} where the substring aa occurs at least twice.
c. Strings over Σ = {a, b, c} where every b is followed immediately by at least one c. Any

string of a’s and c’s is accepted if there are no b’s at all in the string.
3. Describe in English the language accepted by the following DFA.

4. The following “incomplete” DFA accepts all strings matching the pattern a∗baba∗, but there
are edges missing. Complete the DFA by adding a jail state and the missing edges.

5. Draw a DFA for the language of all strings over Σ = {a, b} that do not have two consecutive
b’s.

6. Define the transition function, δ, for the DFA in the previous problem.
7. Draw a DFA for the language of all strings over Σ = {a, b} where no two adjacent symbols

are the same. For example, bab and ababa are in the language, but aa and abb are not.
8. Draw a DFA for the language of all strings over Σ = {a, b} that have an even number of a’s

and an even number of b’s. (Hint : You only need four states.)
9. Following Example 2–8, draw a DFA that accepts all bit strings that represent numbers

congruent to 3 mod 4.
10. Draw a DFA that accepts all bit strings that represent numbers congruent to 3 mod 5

Programming Exercise

1. Implement the DFA in Figure 2–9. Be sure to reflect states and transitions in your code. Test it with
two strings—one that is accepted and one that is rejected.
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2.2 Non-Deterministic Finite Automata

The DFA in Figure 2–9 took a lot of effort to design. It is possible, however, to more succinctly express
the idea of “ends with a 1 in the third-to-last position” than a DFA allows. With non-determinism,
we can get right to the point of expressing exactly what we want, as shown in the non-deterministic
finite automaton (NFA) in Figure 2–14 below.

Example 2–9

Figure 2–14: An NFA that accepts the language of Figure 2–9

Two things stand out in the transition graph above. First, there are two choices of transitions from
the initial state for an input of the symbol 1; we may either stay in state-0 or move to state-1. This
is what makes this machine non-deterministic. Second, there are no out-edges exiting the accepting
state. This is because we want to end there. For a string to end in the accepting state, we must choose
the edge from state-0 to state-1 at just the right moment. If such a choice can be made, we say that
the NFA accepts the string. An accepting path for the input string 10110 is the sequence of states
0, 0, 0, 1, 1?, 1??. Clearly, only strings with a 1 in the correct position can end in final state. The
important thing here is how much easier it is to conceive and express an NFA for this language than
a DFA.

This may seem a strange approach to designing finite automata, and programming such a machine
may appear to require some sort of backtracking procedure, in case we don’t make the right choice
(because we don’t know ahead of time when an input symbol is the last one in the string). Alas, we
can’t “back up” in an input string; all decisions must be made based only on the current state and
input symbol. Fortunately, it is possible to convert any NFA to a DFA by keeping track of all possible
moves as we go. We will show this procedure shortly, but first, let’s see some more NFAs.

Example 2–10

The NFA in Figure 2–15 accepts strings of length two or greater that begin and end with the same
symbol.
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Figure 2–15: NFA accepting strings that begin and end with the same symbol

The non-determinism occurs on the middle states where there are two choices for a and b, respectively.
The path to accept the string bbab is q0, q2, q2, q2, q3.

It is often easier to use a NFA rather than a DFA to design a finite automaton for a regular
language.

Example 2–11

The NFA in Figure 2–16 accepts strings that either contain the substring aa or the substring bb:

Figure 2–16: NFA that accepts strings containing aa or bb

It doesn’t matter if the string contains both aa and bb. Either path will do in that case. There are
multiple accepting paths for the string baaababba for example:
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q0, q0, q0, q1, q3, q3, q3, q3, q3, q3

q0, q0, q1, q3, q3, q3, q3, q3, q3, q3

q0, q0, q0, q0, q0, q0, q0, q2, q3, q3

to name only three. (The initial q0 is where we start before reading input.)

Example 2–12

NFAs have one more interesting feature: they can move from one state to another “on a whim”—in
other words, without consuming any input at all. We indicate this by a lambda transition. See if you
can guess what language the NFA in Figure 2–17 accepts before reading further.

Figure 2–17: What language does this NFA accept?

A lambda transition is basically a “free ride”; we can take it whenever we enter its “from-state” without
consuming any further input. That means that for the NFA above, we have a cycle starting and ending
with state q0, where on each round trip we must encounter the substring ab, optionally followed by
another a. Strings accepted by this NFA include ab,aba,ababa,abababa, and abababaab. We can also
represent this language by the expression {ab, aba}∗, using the Kleene star operator introduced in
Chapter 1. In other words, we choose either ab or aba at will until we decide to stop, or we choose
nothing at all and obtain the empty string. Both ababa and abaaba can be accepted by the path
q0, q1, q2, q0, q1, q2, depending on whether or not we consume a when moving from q2 to q0.

Example 2–13

Now suppose our alphabet is Σ = {a, b, c} and we want to accept strings that match the pattern
a∗ac∗b∗. That is, we need one or more a’s followed by zero or more c’s followed by zero or more b’s.
The NFA in Figure 2–18 recognizes this language.
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Figure 2–18: NFA accepting a∗ac∗b∗

Observe how we represent a Kleene star of a single symbol as a self-loop on a state. Also, we need a
single edge that is not a loop for the required a, because self-loops on states are optional moves. The
lambda transition above forces the b’s to follow the c’s while keeping both optional.

We are now able to give a formal definition of a non-deterministic finite automaton.

Definition 2.3
A non-deterministic finite automaton (NFA) is a finite state machine consisting of the following:

• Q, a set of states, one of which is the initial (or start) state, and a subset of which are final
(or accepting) states.

• Σ, an alphabet of valid input symbols.
• δ : Q× (Σ ∪ λ)→ 2Q, a function which, given a state and an input symbol (which could
be λ), determines the next possible set of states of the machine to move to (i.e., a choice of
states).

The differences between DFAs and NFAs occur in the definition of δ, namely:

1. λ is a valid “input” (i.e., we can move without consuming any input).
2. More than one state may be reached by the same input symbol.
3. It is possible that no transitions exist at all for a particular input (an implicit jail).

The notation 2Q, sometimes written P(Q), represents the powerset² of the set of states, Q. The key
feature of NFAs is that there may be zero or more out-edges for any input symbol exiting any state,
hence the output is a subset of Q. Also, a DFA is just a special case of a NFA, since machines are not
required to have any lambda transitions or multiple out-edges from any state for the same symbol.
NFAs just give us more convenience in designing automata for regular languages.

²The powerset of a set is the set of all possible subsets of that set. If |Q| represents the cardinality of the set Q, then the
cardinality of the power set is 2|Q|, hence the exponential notation for powersets. For example, Q = {q0, q1} ⇒ 2Q =
{φ, {q0}, {q1}, {q0, q1}}, and |2Q| = 2|Q| = 22 = 4.
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When moving from one state to another in a NFA, remember to take into account lambda
transitions emanating from the newly entered state.

Equivalence of NFAs and DFAs

We now show how to convert the NFA in Figure 2–15 to a DFA. The key idea is that for each state we
have a (possibly empty) set of states to track for every input symbol. The tree in Figure 2–19 illustrates
how things can progress as we begin with the start state of the original NFA, q0, and track all possible
moves while reading the first three symbols of any input string. (Going three levels deep suffices in
this case to observe all the possible states for this language.) Multiple transitions leaving a state with
the same symbol appear in horizontally adjacent boxes below.

Figure 2–19: Tracking multiple out-edges simultaneously

The symbol a can reach either q1 or q3 from state q1. We will combine these two states into a single,
“composite” state, {q1, q3}. The same logic applies to states q2 and q3 when leaving state q2 with a b,
giving us the composite state {q2, q3}. See Figure 2–20.

Figure 2–20: Combining like transitions into composite states
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This tree suggests that five possible states suffice to process all possible movements: q0, q1, q2, {q1, q3},
and {q2, q3}, giving the following equivalent DFA.

Figure 2–21: DFA for beginning and ending with the same symbol

Whenever a composite state contains any accepting state from the original NFA, that state becomes an
accepting state in the resulting DFA. Thus, both states containing q3 in the figure above are accepting
states.

It is usually easier to track multiple moves in a NFA with a transition table instead of a tree. The
following is a transition table for the NFA in Figure 2–15.

Table 2–2: The NFA in Figure 2-15 as a Transition Table

The sets representing the possible output states from q1 with an a and from q2 with a b. There are no
valid moves from state q3, indicated by the empty set.

To begin the conversion process to a DFA, we populate a new transition table, listing only the start
state at first. We refer to Table 2-2 above to determine where the NFA takes us from state q0 with each
symbol of the alphabet, as shown in Table 2–3.

Table 2–3: Starting the NFA-to-DFA conversion process

The NFA reached states q1 and q2, so we add rows for these to see where they in turn take us with
the possible input symbols:
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Table 2–4: Adding the two newly reached states

As we track where we can move from these states, we update our working table:

Table 2–5: Tracking the outputs from states q1 and q2

We have obtained two new “states,” {q1, q3} and {q2, q3}, which we process in Table 2–6 below.

Table 2–6: The final DFA

No new states have appeared in the body of our table at this point, so we are done. Having tracked
all possible movements explicitly, there is no ambiguity of moves using the new set of (possibly
composite) states, so the result is deterministic, and is equivalent to the transition diagram in Figure
2–21. The technique we have just illustrated is known as subset construction³ (because our destination
“states” can represent subsets of the original set of states).

Example 2–14

Let’s now convert the NFA in Figure 2–18 to a DFA, referring to its transition table below.

Table 2–7: Transition table for the NFA in Figure 2–18

As explained earlier, the output transitions for each state yield a subset of {q0, q1, q2}. Because of
the lambda transition, there is a free ride to q2 whenever q1 is reached. The set of states immediately
reachable upon entering a state is called its lambda closure, which includes the state itself along with

³It is also known as the Rabin-Scott powerset construction, named after the authors of a 1959 paper.
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all states reachable from that state by one or more lambda-transitions (so the lambda closure of q1 in
Figure 2–19 is the set {q1, q2}). Whenever you enter a state, you automatically reach the other states
in its lambda closure without consuming a symbol. For this example therefore, q1,will never appear
as an output state inside the body of a working transition table without q2.

Definition 2.4
The lambda closure of a state is the set containing the state itself along with all other states
reachable from that state via one or more consecutive lambda transitions (consuming no input).

As before, we begin the conversion to a DFA by constructing a transition table with only the start
state of the original NFA⁴, and see where it takes us with each input symbol. (See Table 2–8.)

Table 2–8: First step in the NFA-to-DFA conversion

As expected, with an a the machine can reach q0, q1 and q2 (the latter because of the lambda edge
from q1 to q2) from state q0, so we track these three states together as a single, composite state. We
will add this to our running list of states. The state φ in this working table represents the fact that
there are no edges for the corresponding symbols and states in the original machine, and will become
a jail state in the resulting DFA. We won’t bother to add a row for a jail state since we know that jails
just loop on every symbol.

To fill in the second row, we must track the behavior of all three states inside the composite state
simultaneously. From there, an a again reaches the composite state {q0, q1, q2}. With a c as input,
however, state q1 moves to itself, and, because of the free ride, to q2 also. (See Table 2–9)

Table 2–9: Processing the new composite state {q0, q1, q2}

We have reached two new states, so we will add two more rows to track them. See Table 2–10.

⁴Because the start state may have outgoing lambda transitions, the start state for the DFA may be a set of states. That is
not the case here, but the first step in this construction is always to use the lambda closure of the NFA’s start state as the start
state of its DFA.
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Table 2–10: Complete Transition Table for the DFA.

No new states have appeared, so we finish by indicating the accepting states. The transition diagram
for the complete DFA appears in Figure 2–22. Note the jail state.

Figure 2–22: The complete DFA diagram after the conversion.

Initial states can have lambda transitions, so remember to make the initial state of the new
DFA the lambda closure of the initial state of the NFA when converting an NFA to a DFA.

The following steps summarize the construction of a DFA from a NFA:

1. Initiate a working transition table for the resulting DFA with the lambda closure of the start
state of the NFA as the start state of the DFA.

2. For each unprocessed (possibly composite) state, S, in the list of states in the left column:
• For each state, s, in S:
• For each symbol, c, in the alphabet:
• For each state, q, reachable from s by c:
• Add the states of the lambda closure of q to the cell in row S and column c.
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3. For each new (possibly composite) state thus obtained, add it to the list of states to process
in the left column; go to step 2 unless no unprocessed (possibly composite) state remains in
the left column.

4. All resulting states containing any accepting state from the original NFA are accepting states
in the resulting DFA.

Since any NFA has an equivalent DFA accepting the same language, both types of
automata characterize the class of regular languages.

NFAs and Complements

Recall that the complement of a regular language can be recognized by a machine obtained by
inverting the acceptability of each state in a DFA that recognizes the language. The same strategy
does not apply, however, to finding the complement of a regular language using a NFA. Why not?

One reason is because NFAs often omit possible moves for input strings, since they represent only
what is acceptable in the language. When complementing a language, we are interested in what is not
acceptable in the original language, so starting with a NFA won’t work.

Example 2–15

Consider the language {a, bab}∗, which the following NFA accepts.

Figure 2–23: NFA for (a, bab)∗

Were we to attempt to complement this machine by only reversing the acceptability of the states
above, we would get the NFA in Figure 2-24:
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Figure 2–24: Inverting the acceptability of states in Figure 2–23

This NFA does not accept the string bb, which is certainly in the complement of {a, bab}∗. To recognize
the complement, we must start with aDFA that accepts the language, which in this case requires only
adding a jail state for the missing moves. (See Figure 2–25.)

Figure 2–25: DFA for (a, bab)∗

We can now invert each state’s acceptability to get a DFA for the complement of the language. You
can see that the DFA in Figure 2–26 accepts the string bb.

Figure 2–26: DFA for complement of (a, bab)∗
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Example 2–16

Even if a NFA does not omit any possible moves, inverting its state acceptability can still fail to give
the correct complement. Consider the NFA in Figure 2–27, which recognizes the language aa∗b∗.

Figure 2–27: NFA accepting aa∗b∗

This NFA is not missing any out-edges, but it has a lambda edge from state q1 to state q2. It accepts
the singleton string a, as it should. Now look at the NFA that results from inverting the acceptability
of each state in Figure 2–28.

Figure 2–28: Inverting Figure 2–27

This NFA also accepts the string a, so it is not the complement after all.

To find the complement of a regular language, start with a DFA.
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Key Terms
non-determinism • lambda transition • lambda closure • composite state • subset construction

Exercises

1. List all possible paths in the automaton in Figure 2–16 (Example 2–11) that accept the string
abbbaa∗.

2. Draw a NFA for the language of all strings over Σ = {a, b} that begin and end with the same
symbol, (similar to example 2–10), but without the restriction that the string is at least length
2—that is, the strings λ, a, b should also be accepted.

The following NFA pertains to problems 3–5.

3. What language does this NFA represent?
4. Convert this NFA to a DFA using the tabular method shown in this section.
5. Draw the transition graph for the DFA from the previous problem.
6. Draw a NFA that accepts all strings over Σ = {a, b} that either end in ab or contain the

substring bb.
7. Convert the NFA in the previous exercise to a DFA. Draw the transition diagram.
8. Draw a NFA that accepts all strings over Σ = {a, b} that have both aa and bb as substrings.
9. Convert the following NFA to a DFA. Draw the transition diagram.

10. Draw a NFA that accepts the language ab∗, (i.e., the language {a, ab, abb, abbb,…}). Then find
its complement and draw its transition graph.
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2.3 Minimal Automata

DFAs are useful in recognizing text patterns and they are easily implemented in code. We haven’t
considered, however, whether an automaton is “efficient.” Our measure of efficiency is the number of
states, since that determines the number of possible transitions that exist.

Example 2–17

Examine the following DFA for any redundant states.

Figure 2–29: Is this DFA “efficient”?

Once we reach state q2, the machine remains in an accepting state regardless of subsequent input.
States q2 and q3 can therefore collapse into a single, accepting state, as shown in the next figure.

Figure 2–30: Combining states q2 and q3

Now think about what language this machine accepts. If a string starts with a b, it is accepted. If it
starts with an a, it is not accepted until a b is read. In other words, this machine accepts the language
of strings that have at least one b. We can therefore combine states q0 and q1 to obtain the minimal
DFA in Figure 2–31.

Figure 2–31: A minimal DFA for the language accepted in Figure 2–29
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We have discovered that states q0 and q1 play the same role in the original DFA. States q2 and q3 are
likewise indistinguishable in their function, and we have reduced the number of states from 4 to 2.

Example 2–18

Which states are indistinguishable in the following DFA?

Figure 2–32: Another inefficient DFA

First, note that there are two jails: states q5 and q6. There is never a need for more than one jail state,
so we combine those. A little thought reveals that q3 and q4 behave identically, and q1 and q2 as well.
The minimal DFA appears in Figure 2–33 below.

Figure 2–33: Minimal DFA for Figure 2–32

Not all redundancies in DFAs are so easily recognized. We need an algorithm to determine when
states are indistinguishable in the role they play in a state machine. Our approach is to examine all
possible pairings of states for “distinguishability”. When we are finished, we can combine into a single
state those states that have not been distinguished from each other.

We know that final states clearly play a different role than non-final states, since they give different
“output” (accept vs. reject), so we first mark all final/non-final pairs of states as distinguishable. It is
convenient to use a tabular approach to track the process. We will use the DFA in Figure 2–29 for
illustration. Examine the structure of the following table.
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Table 2–11: Tracking distinguishable states in Figure 2–29

The six unshaded cells in the upper triangle in the body of the table correspond to the six possible
pairings of states in the DFA: (q0, q1), (q0, q2), (q0, q3), (q1, q2), (q1, q3) and (q2, q3). We have placed
check marks in the cells that pair a final state with a non-final state, since we know that they are
distinguishable from the get-go. This is the initial configuration for the minimization process.

We now visit the two remaining unchecked cells to see if we can distinguish them or not. We define
distinguishability of states recursively as follows.

Definition 2.5
Two DFA states, q1 and q2, are distinguishable if:

• exactly one of the states is an accepting state, or
• The states δ(q1, c) and δ(q2, c) are distinguishable for at least one symbol c ∈ Σ

In other words, two states are distinguishable if they have different acceptability or if they move
with the same symbol to states which have been previously found to be distinguishable (so the
minimization algorithm will be iterative). Distinguishable states transition to semantically different
subsequent states with the same input symbol.

We can now check (q0, q1) and (q2, q3) for distinguishability. (We already know from Example 2–17
that neither pair is distinguishable, but let’s illustrate the algorithm, which we will formalize shortly.)
For (q0, q1), we have, referring to Figure 2-29:

δ(q0, a) = q1, δ(q1, a) = q1

δ(q0, b) = q2, δ(q1, b) = q2

The output states for each input symbol state are identical, so they are certainly indistinguishable.
Looking at (q2, q3) we find the following:

δ(q2, a) = q3, δ(q3, a) = q3

δ(q3, b) = q3, δ(q3, b) = q3



Finite Automata 40

Both inputs move to q3, so these states can also be combined, as we surmised when we arrived at the
minimal DFA in Figure 2–31.

Example 2–19

Now let’s use the process to minimize the DFA in Figure 2–32. We first initialize the table, marking
pairs of final vs. non-final states distinguishable.

Table 2–12: Initial table for minimizing Figure 2–32

We have nine pairs corresponding to the empty cells above to test for distinguishability:

When we find moves that distinguish two states, we don’t have to check any remaining symbols for
that pair (as with the last four check marks above). During this round, we found six new pairs of
distinguishable states, so we update our table as follows.
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Table 2-13: Round 2 of checking for distinguishable pairs

Since we found new check marks, we must process the remaining empty cells again, in case the
newfound distinguishable pairs lead to yet other ones. Doing so, however, we find that no new changes
occur, so we now combine (q1, q2), (q3, q4), and (q5, q6) to obtain Figure 2–33.

We can now describe the minimization algorithm as follows:

1. For a machine with n states, form a (n−1)× (n−1) triangular table, listing the first n−1
states down the left side as row headers, and the last n − 1 states horizontally as column
headers.

2. Initialize the table by placing a check mark in those cells where exactly one of the
corresponding states in the pair is a final state.

3. For each remaining empty cell: if the two corresponding states move to distinguishable states
on the same symbol of the alphabet, place a check mark in that cell.

4. If a new check mark was entered anywhere in step 3, repeat step 3.
5. Combine the states that correspond to any remaining empty cells.

Indistinguishability (but not distinguishability!) is transitive: if the pair (x, y) is indistinguishable, as
well as (y, z), then the pair (x, z) is also an indistinguishable pair, and all three states can be combined
into one state, {x, y, z}.

Example 2–20

It was easy to see which states could be combined in the previous two examples. The DFA in the next
figure isn’t so easy to minimize by cursory inspection.
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Figure 2–34: Another DFA to minimize

The initial setup for the minimization process follows in Table 2-14.

Table 2-14: Initial table for minimizing the DFA in Figure 2–34

We now process each empty cell:

On this iteration, we see that states q2 and q3 are distinguishable, so we update the table in preparation
for another iteration.
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Table 2-15: Distinguishing states q2 and q3

Now we test for other distinguishable pairs based on this new information:

This leaves only one indistinguishable pair, (q1, q4). A quick check verifies that these states remain
indistinguishable, so we combine them in the final result in Figure 2-35.

Figure 2–35: Minimal DFA for Figure 2–34
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Key Terms
minimal DFA • distinguishable states • transitive

Exercises

1. Show that the DFA in Figure 2–9 is minimal.
2. Minimize theDFAdefined by the transition function below. The accepting states are{q3, q4, q8, q9}.

δ(q0, a) = q1, δ(q0, b) = q9

δ(q1, a) = q8, δ(q1, b) = q2

δ(q2, a) = q3, δ(q2, b) = q2

δ(q3, a) = q2, δ(q3, b) = q4

δ(q4, a) = q5, δ(q4, b) = q8

δ(q5, a) = q4, δ(q5, b) = q5

δ(q6, a) = q7, δ(q6, b) = q5

δ(q7, a) = q6, δ(q7, b) = q5

δ(q8, a) = q1, δ(q8, b) = q3

δ(q9, a) = q7, δ(q9, b) = q8

3. Find a minimal DFA for the following NFA.

2.4 Machines with Output

Example 1–4 showed a finite automaton that echoed all its input except for the text of dollar-delimited
comments. The generic term for such an output-producing machine is finite-state transducer,
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borrowing the name from electronics (a transducer converts energy from one form to another). Our
transducers convert input text to output text. The machine in Figure 2–36 below emits output as it
moves from one state to another, using a slash on transitions to separate the input from the output.
Such a transducer is also called a Mealy machine⁵.

Example 2–1

The following Mealy machine emits a 1 whenever the input symbol changes, and a 0 otherwise.

Figure 2–36: A Mealy machine that tracks changes in input

The first symbol always emits a 1, since it follows nothing (which is considered a “change”). Given
the input string aababba the output is 1011101. The states are aptly named to reflect the most recent
symbol read.

Example 2–22

Mealy machines can act as recognizers for specific substrings by printing a 1 whenever they encounter
them. This has an advantage over a DFA recognizer because it indicates the position of the last symbol
of multiple, matching substrings. The machine in Figure 2-37 recognizes the substrings aa and bb.

⁵Named after George H. Mealy who introduced them to describe sequential circuits. Another type of machine, named
after Edward F. Moore, emits output when a state is entered instead of during a transition. Both types of machines solve the
same set of problems; one may be preferable over the other in different situations. We will use only Mealy machines.
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Figure 2-37: Recognizes substrings aa or bb

The output for the input string aaabbabbba is 0110100110. This machine catches overlapping
substrings, hence the initial substring aaa above prints 011.

Example 2–23

A parity bit is a bit that is added at the end of a bit string to indicate whether the number of 1-bits in
the original string is even or odd. An even parity bit of 0 will be appended if the number of original 1-
bits is even; otherwise the even parity bit is 1. Using an even parity bit is a rudimentary error-checking
process that always produces an even number of 1-bits in a transmitted string. The machine in the
following figure appends an even parity bit to its input.

Figure 2–38: An even-parity checker

It is necessary to know when the string ends, so we use a dollar sign to mark the end of the input
string.
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Example 2–24

The following diagram from Cohen⁶, represents a sequential circuit.

Figure 2–39: A simple sequential circuit

The input bit feeds into both the first NAND and the final OR. At each clock pulse the circuit
advances, so the new B becomes what the old A was, the new A becomes the NAND of the input
with the OR of the old A and old B, and the OR of the old B and the input is the output for that
pulse. The internal state is the pair of values in A and B at the same moment in time, namely, one of
{(0, 0), (0, 1), (1, 0), (1, 1)}. We can trace the possible configurations in a transition table. We begin
with the start state, and see where it leads (not all possible combinations may appear in some circuits).
(See Table 2–17).

Table 2–17: Start state of the sequential circuit

Now examine what happens in state q0 (i.e., where A = B = 0) and the input is 0. The new B is the
old A, which is 0. The new A is ¬(0 ∧ (0 ∨ 0)) = ¬0 = 1. The output is 0 ∨ 0 = 0. If the input is 1,
then A becomes ¬(1 ∧ (0 ∨ 0)), which is 1, B is still 0, but the output is 1 this time. The table below
updates its first row with these results, using q1 = (1, 0).

Table 2–18: First row of Table 2–17 completed

We now seek where q1(A = 1, B = 0) leads. If the input is 0, the new A becomes ¬(0 ∧ (1 ∨ 0)) =
¬0 = 1, as before, and, as always, B becomes the old A, so we go to a new state, (1, 1). If the input is
1, the new A is ¬(1 ∧ (1 ∨ 0)) = 0, and B = 1, leading to a new state, (0, 1):

⁶Cohen, Daniel, Introduction to Computer Theory, Second Edition, Wiley, 1997, p. 162.
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Table 2–19: Second row completed

If you complete the table, you should get a Mealy machine equivalent to the following diagram.

Figure 2–40: Mealy machine for the circuit in Figure 2-40

Computer Arithmetic

Mealy machines naturally model low-level computer arithmetic algorithms. A one’s-complement
machine, for example, is modeled by the following, trivial machine.

Figure 2–41: A one’s-complement machine

Example 2–25

Adding two binary numbers is also “Mealy-able,” but requires reading corresponding bits simultane-
ously, right-to-left. The machine will therefore take pairs of bits as input, in reverse order. Recall how
to add binary numbers by hand:
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The Mealy machine below considers each vertical bit-pair, right-to-left, mimicking what we do
manually. We assume it emits the result in right-to-left order.

Figure 2–42: Adding two binary numbers

The one thing missing is the leftmost carry bit (only 0011 is printed for the sum above instead of
10011). To solve this problem, we assume that each state emits the bit in its label, which is the carry,
when the machine halts there. The code below implements the carry.

def binadd(x,y):

assert len(x) == len(y)

state = '0'

pairs = list(zip(x,y)) # combine strings pairwise

result = ''

for pair in reversed(pairs):

if state == '0':

if pair in [('1','0'), ('0','1')]:

result += '1'

elif pair==('0','0'):

result += '0'

elif pair==('1','1'):

result += '0'

state = '1'

else:

assert False, 'invalid input'

else: # state == '1'

if pair in [('1','0'), ('0','1')]:

result += '0'

elif pair==('1','1'):

result += '1'

elif pair==('0','0'):

result += '1'
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state = '0'

else:

assert False, 'invalid input'

if state == '1':

result += '1' # append carry

return result[::-1] # reverse result

print(binadd('1101','0110')) # 10011

Example 2–26

Subtracting two binary numbers follows a similar pattern, except the states track what is borrowed
instead of what is carried:

Figure 2–43: Subtracting binary numbers

Using the same input as in the previous example, we get 1101-0110=0111, which in decimal is 13-6=7.
Subtracting the other way, we get 0110-1101=1001. The latter result is the two’s-complement of 0111,
and represents -7 decimal, as expected. Therefore, the bit in the label in each state is the borrow (or
equivalently, the sign-bit ; 1 for negative, 0 otherwise).

Example 2–27

As a final example of computer arithmetic, we design a Mealy machine that rounds its binary input
down to nearest even number. All this requires is to make the last bit zero if it isn’t already. But we
need to know when the last symbol has been read, so we need an end-of-string symbol; we’ll use
the dollar sign again. Furthermore, we need to have a one-symbol delay in emitting output; since we
don’t print the dollar sign, we always print the previous symbol consumed after reading the current
character. See Figure 2–44 below.
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Figure 2–44: Rounds to the nearest even number

The outgoing edges from q0 emit nothing. Instead, we use the other two states to track the previous
symbol read. When the string has been exhausted, we emit a 0 no matter what. The output for 101$
is 100, as expected.

Lexical Analysis

Mealy-style machines are useful in separating input into meaningful parts. In the next example, we
consider how to design a machine that will ignore C-style comments from its input, while outputting
everything else.

Example 2–28

C-style comments are supported by many popular programming languages and are delimited with a
“/*” at the beginning and a “*/” at the end. Since the delimiter is a two-symbol sequence, we need to
detect when a slash and asterisk occur together. Reading a slash may or may not introduce a comment.
What if a slash is followed by another slash? The second slash may or may not belong to a comment,
but the first slash must pass through as output regardless. The following diagram is a start on the
design for a Mealy Machine to solve the problem.

Figure 2–45: Partial machine for removing C-style comments
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Technically, Mealymachines have single symbols for input and always have an output symbol on each
edge, so that the input and output have the same number of symbols (this is important in electronics).
We are obviously taking some liberties with notation here. First, we use the input “else” to cover all
cases where the other edges leaving a state do not apply. We also use the question mark as a wildcard
symbol representing “the current symbol being processed,” as we did in Chapter 1. Finally, we omit
the separating slash when a transition produces no output, as in the edges from q0 to q1 and q1 to q2
above. (Some authors use lambda after a slash to indicate no output.)

Starting in state q0, we merely echo the input until we encounter a slash, in which case we move
to state q1. At this point, we don’t know if that slash actually begins a comment. If an asterisk does
not follow immediately, we must echo the previous slash, so we are one symbol behind in emitting
output in state q2. We can also encounter multiple slashes in a row (e.g., if the code contains x //*
this is the divisor: */y.) Even though it may not be syntactically correct for some languages,
it is also possible that a language uses // as a valid operator (like Python 3). If a language uses C-style
comments and has such an operator, as in x//y, then when we reach the y, we must output both a
slash and the y. This explains why the edge going back to state q0 from q1 prints two symbols.

Once we get an asterisk in state q1, we are inside a comment so we do not print the preceding slash
and we move to state q2. Similar logic applies when exiting a comment, which you can complete as
an exercise.

Example 2–29

One of the first steps in compiling source code, in addition to removing comments, is to recognize the
“words” in the code, that is, “tokens” such as keywords, variables, constants, and operators. A token
consists not only of its text but also its type, or class. For example, in the expression x+1, the compiler
needs to know that x is a variable, + is an operator, and 1 is a literal/constant. A machine can extract
a stream of tokens and pass the result on to the next phase of compilation.

To illustrate, we will use a simple language from Louden⁷, TINY, which contains only the following
tokens:

Tokens in the TINY Language

Description Class Representation
Identifiers ID Consist of only alphabetic symbols
Keywords KWD Special identifiers: if then else

repeat until read write end
Numbers NUM Base-10 integers, leading zeroes okay
Operators OPR + – * / < > ( ) = (equality)
Semi-colon SEMI ;
Assignment ASGN :=

⁷Louden, Kenneth C., Compiler Construction: Principles and Practice, PWS Publishing, 1997. Used with permission.
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Comments are delimited by single, opening and closing curly braces. Here is sample TINY program:

A sample TINY program

{ A TINY Program

CS 3240

}

read x;

if 0 < x then

fact := 1;

repeat

fact := {embedded comment}fact * x;

x := x - 1

until x=0;

write fact

end

{}

A lexical analysis of this program could be depicted as follows:

Classifying the tokens in the TINY program

KWD: read

ID: x

SEMI: ;

KWD: if

NUM: 0

OPR: <

ID: x

KWD: then

ID: fact

ASSIGN: :=

NUM: 1

SEMI: ;

KWD: repeat

ID: fact

ASSIGN: :=

ID: fact

OPR: *

ID: x

SEMI: ;

ID: x

ASSIGN: :=

ID: x

OPR: -
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NUM: 1

KWD: until

ID: x

OPR: =

NUM: 0

SEMI: ;

KWD: write

ID: fact

KWD: end

The machine in Figure 2–46 below, doesn’t precisely follow the definition of a Mealy machine, but it
does indicate how to produce the required output above. It collects the symbols of a token and then
outputs its text and token class when it returns back to the start state.

Figure 2–46: Machine that accepts TINY tokens

Note the free arrows exiting the states representing the token classes. We use these to indicate that
when leaving that state, the input it has collected for its token will be emitted, along with the token
class identifier. The tokens id and kwd are combined. This suggests an implementation that searches
a table of keywords on the identifier to determine whether its class is ID or KWD. Because of space
limitations, this diagram is missing a loop on the start state ignoring whitespace. Finally, since tokens
are often delimited by non-space symbols, those symbols must be pushed back onto the input stream
in some cases when returning to the start state. The start state is accepting to indicate that the input
was syntactically valid. A string that does not end in the start state contains a syntax error.
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Minimal Mealy Machines

We can minimize the number of states in a Mealy machine just as we did for DFAs. The machine
below, which prints a 1 for each b and a 1 for every other a, starting with the first, has one more state
than it needs.

Figure 2–47: An “inefficient” Mealy Machine

Since we want the first a to emit a 1, and then alternate from there, we can eliminate state q0 and
make q2 the initial state:

Figure 2–48: A minimal version of Figure 2–47

No move is needed for b since it emits a 1 regardless of state.

The process to minimize a Mealy machine is like the DFA minimization process in section 2.3, except
instead of acceptability⁸, it is the output that initially distinguishes one state from another. Observe
the output of the different states below.

δ(q0, a) = 1, δ(q0, b) = 1

δ(q1, a) = 0, δ(q1, b) = 1

δ(q2, a) = 1, δ(q2, b) = 1

⁸Indeed, acceptability is the “output” of a state in a DFA, should the input terminate there. So the first step for both DFAs
and Mealy machines is in essence to distinguish states by their “output”.
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The outputs for q0 and q2 are identical. In this simple case, we already know we can combine these
states, but in general we must wait until all distinguishable pairs of states are found before merging
indistinguishable states. The rest of the algorithm is identical to the state-minimization algorithm in
the previous section.

To initialize the process of minimizing a Mealy machine, compare the output from
different states.

Example 2–30

To illustrate the algorithm of minimizing a Mealy machine, inspect Figure 2–49 below.

Figure 2–49: A Mealy machine to minimize

As before, we determine which states can be distinguished by first examining their output symbols:

δ(q0, 0) = 0, δ(q0, 1) = 0

δ(q1, 0) = 0, δ(q1, 1) = 0

δ(q2, 0) = 0, δ(q2, 1) = 1

δ(q3, 0) = 0, δ(q3, 1) = 1

δ(q4, 0) = 0, δ(q4, 1) = 0

States q0, q1, and q4 each give an output of 0 for both inputs, and the other two states yield 0 for a
and 1 for b. Thus, each state in {q0, q1, q4} is distinguishable from those in {q2, q3}, giving the initial
table below.

We now follow the state minimization algorithm from section 2.3:
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We now add check marks to distinguish (q0, q4) and (q1, q4) in preparation for another iteration:

On the next iteration (not shown) q0 and q1 remain indistinguishable and can therefore be combined.
See Figure 2–50.

Figure 2–50: Minimal version of Figure 2-49

Key Terms
Mealy machine (aka “finite state transducer”) • delayed output
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Exercises

1. Draw a Mealy machine that reads ones and zeroes and prints a one every time the substring
1001 is recognized. For example, the input 01001001 yields 00001001.

2. Draw a Mealy machine that performs a circular shift-left operation on strings of a’s and b’s
with an end-of-string marker, so that abaab$ yields the string baaba.

3. Draw aMealymachine that rounds an even binary number up to the nearest odd binary number.
This also needs an end marker ($).

4. Draw a Mealy machine that reads bits and prints an even-parity bit after every four bits. You
may assume that the input length is a multiple of four. As an example, the input string 10110110
yields 1011101100.

5. Find a Mealy machine for the circuit depicted below.

6. Use the procedure described at the end of this section tominimize the followingMealymachine.

7. Create a machine based on Figure 2–45 to also ignore //-style comments (which ignore
everything through the end of the current line) in addition to traditional C-style comments.

Programming Exercises

1. Write a program that implements the comment-ignoring DFA from Exercise 7 above.
2. Implement the machine in Figure 2–46. Use the sample TINY program in this section as input

to obtain the expected output.
3. Implement the machine in Exercise 4 above.
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Chapter Summary

Deterministic finite automata are useful because they describe so many common scenarios where
changes in state occur. They are also straightforward to implement, but can at times be challenging to
design correctly. Non-deterministic finite automata are often easier to design than DFAs, but are
more difficult to implement. Fortunately, NFAs have an associated DFA that performs the same
function, obtained by subset construction. Both types of automata characterize the regular languages.
In addition, for every regular language, there is a unique DFA with a minimal number of states.

Finite automata also model processes that convert input into meaningful output, such as filtering out
certain text or counting the number of occurrences of substrings. These so-called Mealy machines
also have a unique, minimal configuration.



Glossary
algorithm

A TM/procedure that always halts, yielding output
automaton

a finite-state machine
breadth-first traversal

a graph traversal algorithm that visits all nodes at the same distance from a given node before
preceding to the next level

Chomsky Hierarchy
a classification of all types of formal languages

Chomsky Normal Form (CNF)
a standard form for context-free grammars where each rule generates either a single terminal
or exactly two non-terminals

Church-Turing Thesis
the conjecture that any computation can be expressed as a Turing Machine

closure (of operators)
the property that the result of any operations on elements from a set remains in that set

computable
a function or language that can be processed by a Turing machine that always halts

computation
a procedure that processes input and yields output (if it halts); the meaningful manipulation of
symbols

computational grammar
an unrestricted grammar that computes a function given an input string delimited by variables

context-free
describes a language recognized by a pushdown automaton or generated by a context-free
grammar (the latter has only a single variable on the left-hand sides of its rules)

context-sensitive language/grammar
a language decided by a Linear Bounded Automaton, or generated by a non-contracting,
unrestricted grammar

countable
describes a set whose elements can be arranged in a one-to-one correspondence with (a subset
of) the natural numbers

decidable
a language or function for which there is a TM that always halts and accepts/computes the
language/function
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depth-first traversal
a graph traversal algorithm that visits nodes in complete, left-most paths before preceding to
other paths

derivation
the process of generating a string from a grammar

determinism
describes a process that operates the same way, without variation or ambiguity, every time the
same input is given

DFA deterministic finite automaton; traverses the same path every time the same input is given
DPDA

deterministic pushdown automaton
dynamic programming

a procedure that works in stages, storing the results from each stage, so that subsequent stages
may use results from previous stages

encoding
a symbolic representation of set elements

formal language
a set of strings from from symbols of a given finite alphabet

grammar
a set of substitution rules for describing/generating strings in a language

halt state
a state in an automaton that has no moves (out-edges); equivalently, it never appears in the
domain of a transition function

instantaneous description (ID)
of a Turing machine; a representation of the current state, the position of the read/write head,
and the current contents of the used portion of the tape

lambda closure
of a state in an NFA; the state itself along with the states reachable from that state by one or
more lambda transitions

Kleene star
zero or more concatenations of symbols of an alphabet or strings of a set

LBA Linear Bounded Automaton, a Turing machine that only needs a constant factor times the
number of input symbols for working tape space

non-contracting grammar
a formal grammar where the length of subsequent sentential forms in a derivation never
decrease

non-deterministic finite automaton (NFA)
a finite-state machine that allows zero or more transitions on a state for the same input symbol,
as well as lambda transitions

non-terminal
another name for a variable in a formal grammar; not a symbol in the alphabet in use
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normalized PDA
a PDA where every lambda-pop transaction is accompanied by equivalent non-lambda-pop
transitions popping each symbol of the stack alphabet

nullable
a variable in a formal grammar that can yield lambda in one or more substitutions

operator associativity
describes how adjacent operators of the same precedence are ordered (right vs. left associative,
achieved with right or left recursion in a CFG)

operator precedence
describes the order of evaluation for adjacent operators (governed by where the associated rule
appears in a CFG)

parse/derivation tree
a graphical representation of a derivation using a context-free grammar

partial function
a function defined only on a subset of its domain

post machine (queue machine)
a finite automaton that uses a queue for auxiliary storage

product table
a tabular representation of the simultaneous execution of two automata

pushdown automaton (PDA)
a finite automaton that uses a stack for auxiliary storage

recognizable
describes a recursively enumerable language or partial function that has an associated Turing
machine that halts for only a proper subset of its domain

recursive language
a formal language decided by some Turing machine (always halts)

recursive variable
a variable in a formal grammar that appears both on the left and right-hand sides of the same
rule

recursively enumerable language (RE)
a formal language that has an associated Turing machine that halts on strings in the language,
but may not halt on strings not in the language

reduction
of one problem/computation to another. Used to show that a problem/computation is solvable/-
computable or not in terms of another problem/computation

regular
describes a language represented by a regular expression or grammar, or that is decided by a
finite automaton

regular intersection/union
the intersection/union of a context-free language with a regular language

subset construction
the process of tracking all possible output states together as a composite state when converting
a NFA to a DFA



Glossary 277

terminal
a symbol in the alphabet of a formal language

total function
a function defined on all input in its domain

transition
an action in an automaton, represented by an edge in a transition graph, an entry in a transition
table, or by a transition function

transition graph
a directed graph that represents how states change when processing input symbols from an
alphabet

transition table
a tabular representation of an automaton, showing how input symbols map to states (and
sometimes to auxiliary storage)

Turing machine
a finite-state machine that uses a two-way, read/write, infinite tape for auxiliary storage

uncountable
describes a set that is not countable

undecidable
a language or computation for which there is no algorithm/TM to decide it (may hang on some
inputs)

unit production
a grammar rule of the form V1 → V2, where V1 and V2 are single variables

unrestricted grammar
a formal grammar that allows strings on the left-hand side of a rule instead of just single
variables (enables contextual replacement)

useless variable
a variable in a formal grammar that either is not reachable from the start variable, or that never
yields a terminal string
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