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Abstract

This note shows how to compute analytic functions of matrix arguments. It first appeared
in the Fall 1978 issue of the Pi Mu Epsilon Journal. I wondered why even though we often spoke
of the matrix exponential, eAt, none of my professors could tell me how to compute it. So I did
some digging and came up with this. I was just finishing my first masters degree at the time.

Since the time of Cayley and Sylvester there has been great interest in the computation of ma-
trix functions. For example, to compute the matrix exponential eAt, which satisfies the matrix
differential equation with constant coefficients

Ẋ(t) = AX(t),

methods have been developed which rely upon properties of differential equations, the Jordan
canonical form, or results from linear algebra such as normality, diagonalizability, etc.[2][4][5] Most
techniques for calculating a function f of a matrix A express f(A) as a polynomial in A.

Of all such methods, the simplest in concept are those based on an interpolation formula intro-
duced by Sylvester[7],

f(A) =

n∑
i=1

n∏
j=1,j 6=i

A− λjI
λi − λj

f(λi) (1)

which holds when A has distinct eigenvalues, λ1, . . . , λn, lying within the circle of convergence of
f(z).

The notion of a matrix function is usually seen for the first time in a matrix analysis course
or in a course on the theory of ordinary differential equations, which are graduate courses at most
schools. The purpose of this note is to give a development of Sylvester’s formula accessible to the
mathematics undergraduate.

A proof of (1) follows from the following generalization of the division algorithm, which is a
modification of a theorem of Friedman[3].

Theorem 1 Let p(z) be a polynomial with distinct roots, and let f(z) be a function analytic in a
domain D, which contains the roots of p(z). Then there exists a unique polynomial r(z), where
deg(r) = deg(p)− 1, and a function h(z), analytic in D, such that

f(z) = p(z)h(z) + r(z) (2)
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Proof Denote the roots of p(z) by λi, i = 1, . . . , n, with λi = λj ⇔ i = j. Let r(z) be the
unique polynomial of degree n−1 that agrees with f(z) at each λi (this is the unique interpolating
polynomial, which can be expressed by the LaGrange formula:

r(z) =

n∑
i=1

n∏
j=1,j 6=i

z − λj
λi − λj

f(λi) )

and define

h(z) =
f(z)− r(z)

p(z)
(3)

Since each zero of the denominator in (3) is also a zero of the numerator, the singularities of h(z)
are removable, i.e.

lim
z→λi

(z − λi)h(z) = 0

hence, h(z) is analytic and the result follows. �

To compute f(A), we shall let p(z) in the above theorem be the characteristic polynomial of A and
consider equation (2). By the Cayley-Hamilton theorem, f(A) = r(A) and

f(λi) = r(λi), i = i, . . . , n (4)

The equations (4) represent a linear system which can be solved for the n-coefficients of r(z), and
the calculation of f(A) = r(A) is straightforward.

Notice that the LaGrange interpolating polynomial for r(z) satisfying (4) shows that r(A)
coincides with (1), by which f(A) may be computed directly. We illustrate the two processes.

Example 1

1. Compute f(A) = eA, whereA =

(
1 3
0 2

)
. A has characteristic polynomial p(z) = (1− z)(2− z),

hence λ1 = 1, λ2 = 2. Since r(z) is of the form a1z + a0, we obtain the system:

e1 = a1 + a0

e2 = 2a1 + a0

with solutions a1 = e2 + e, a0 = 2e− e2. Thus,

eA = r(A) = a1A+ a0I

= (e2 − e)
(

1 3
0 2

)
+ (2e− e2)

(
1 0
0 1

)
=

(
e 3(e2 − e)
0 e2

)
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2. By equation (1),

f(A) =
2∑
i=1

2∏
j=1,j 6=i

A− λjI
λi − λj

f(λi)

=

(
−1 3
0 0

)
−1

e+

(
0 3
0 1

)
1

e2

=

(
e 3(e2 − e)
0 e2

)
Note that method 2 is more efficient for machine computation.

The procedure for the general case follows from Theorem 2, which is based on an extension of
(1), first given by Bucheim[1](cf. [5][6]).

Theorem 2 Let p(z) be a polynomial of degree n with k distinct roots, k ≤ n, and let f(z) be
a function analytic in a domain D containing the roots of p(z). Then r(z) and h(z) exist as in
Theorem 1 and (2) holds.

Proof Let mi denote the multiplicity of each root λi of p(z), so that
∑k

i=1mi = n. Let r(z) be
the polynomial of degree n− 1 that agrees with f(z) at each λi, and whose derivatives of all orders
up to mi − 1 agree with those of f(z) at each λi, i.e.

f (j)(λi) = r(j)(λi), j = 0, 1, . . . ,mi − 1; i = 1, . . . , k (5)

The polynomial r(z) exists and is unique, being merely a form of the general Hermite osculating
polynomial[2][6].

We again form the quotient (3) and notice that if λi has multiplicity mi, then λi is a zero of
order at least mi − 1 of the denominator of h(z), and we apply L’Hospital’s rule mi − 1 times to
obtain a finite limit,

lim
z→λi

h(z) = lim
z→λi

fmi−1(z)− rmi−1(z)

pmi−1(z)
<∞, i = 1, . . . , k,

hence h(z) is analytic in D and (2) follows. �

Again we notice that (5) is a system of equations yielding the coefficients of r(z), and we
compute f(A) = r(A) as before.

Example 2

Compute sin(A), where A =

(
1 3
0 1

)
. A has characteristic polynomial p(z) = (1 − z)2, hence

λ = 1, and m = 2. Since r(z) and r′(z) have respectively the forms a1z + a0 and a1, we obtain the
system

sin(1) = a1 + a0

cos(1) = a1

3



with solutions a1 = cos(1), a0 = sin(1)− cos(1). Then,

sin(A) = cos(1)

(
1 3
0 1

)
+ [sin(1)− cos(1)]

(
1 0
0 1

)
=

(
sin(1) 3 cos(1)

0 sin(1)

)
For large matrices, it would be computationally more efficient to evaluate f(A) directly from the
Hermite formula.

Remarks

Notice that the foregoing development is valid if the minimum polynomial of A is used in place of
the characteristic polynomial. The results likewise hold for any scalar function f(z) provided that
the right side of (2) is well defined for each characteristic root. The purpose for the requirement
of analyticity here was to maintain an elementary exposition by avoiding the subtleties involved in
shifting from a scalar to a matrix argument in f(z) (see [6]). It is clear that any analytic function
can support a matrix argument by virtue of its power series.
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