
LU Decomposition Example

Chuck Allison - CS 3320

April 2006 (Updated March 2016)

Partial pivoting is used in solving linear systems because otherwise roundoff error can be mag-
nified during Gaussian elimination. With partial pivoting, the error is never magnified and, in fact,
is usually dampened.

Consider the following 2-by-2 system:

a11x1 + a12x2 = b1

a21x1 + a22x2 = b2

To reduce the matrix of coefficients,

(
a11 a12 b1
a21 a22 b2

)
, with naive gaussian elimination, we use the

multiplier m1 = −a21
a11

to obtain the following: a11 a12 b1

a21 +m1a11 a22 +m1a12 b2 +m1b1


We expect that the quantity in position (2, 1) will be zero, but it may not be if the multiplier,

m1, is large in magnitude. Since there is potentially a little roundoff error in all quantities, consider
the effect of the multiplier on that error, δ, say:

a21 −
a21
a11

(a11 + δ) = a21 − a21 −
a21
a11

δ = −a21
a11

δ 6= 0

The roundoff, δ, is magnified if a21 > a11. Not good. For this reason, we always want to use
the coefficient with the largest magnitude as the pivot so that the multipliers will never exceed 1.
This means we may have to swap some rows during Gaussian elimination.

The goal of LU decomposition is to factor a matrix of coefficients in a way that allows for
efficient, accurate solutions of systems of equations with different right-hand sides. When using
partial pivoting, a reordering of rows occurs, so we obtain a factorization that looks like

LU = PA

where L is lower triangular (with 1’s on the diagonal), U is upper triangular (and is, in fact,
the result of the Gaussian elimination with partial pivoting), and P is a permutation matrix that
represents the row swaps that occurred.

1



To illustrate, consider the following system of equations:

2x+ y − 2z = 10

3x+ 2y + 2z = 1

5x+ 4y + 3z = 4

To reduce the matrix of coefficients, A =

 2 1 −2
3 2 2
5 4 3

 using partial pivoting, we begin by

swapping rows 1 and 3:

P1,3A =

 5 4 3
3 2 2
2 1 −2


Next we zero-out the numbers below the pivot 5 with the operations E1,2(−3

5) and E1,3(−2
5):

E1,3(−
2

5
)E1,2(−

3

5
)P1,3A =

 5 4 3
(35) −2

5
1
5

(25) −3
5 −16

5


The parenthesized entities represent the zeroes obtained through Gaussian elimination, but we will
store the opposite of the multipliers in their place, because of the special property of elementary
matrices that E−1

i,j (m) = Ei,j(−m).

To continue with the elimination, we notice that we must make −3
5 the new pivot so we swap

rows 2 and 3 (including the multipliers–they must accompany the rows they operated on originally–
you’ll see why shortly):

P2,3E1,3(−
2

5
)E1,2(−

3

5
)P1,3A =

 5 4 3
(25) −3

5 −16
5

(35) −2
5

1
5


and then eliminate the −2

5 in position [3,2], and store the opposite of the multiplier there:

E2,3(−
2

3
)P2,3E1,3(−

2

5
)E1,2(−

3

5
)P1,3A =

 5 4 3
(25) −3

5 −16
5

(35) (23) 7
3

 (1)

We now have

U =

 5 4 3
0 −3

5 −16
5

0 0 7
3

 , L =

 1 0 0
2
5 1 0
3
5

2
3 1


stored together in the original storage for A, and the reader can verify that LU = PA, where

P = P2,3P1,3 =

 0 0 1
1 0 0
0 1 0



2



If you need further convincing that this is not just bunch of black magic (although it is sort
of like magic :-), observe the following, starting with (1) (and remember that P−1

i,j = Pi,j , and

E−1
i,j (m) = Ei,j(−m)):

E2,3(−
2

3
)P2,3E1,3(−

2

5
)E1,2(−

3

5
)P1,3A = U

⇒ A = P1,3E1,2(
3

5
)E1,3(

2

5
)P2,3E2,3(

2

3
)U

However, we can pull the permutation matrices out front (that’s the ”magic”; it has to do with
the order of these particular operations not interfering with each other):

⇒ A = P1,3P2,3E1,2(
3

5
)E1,3(

2

5
)E2,3(

2

3
)U

⇒ P2,3P1,3A = E1,2(
3

5
)E1,3(

2

5
)E2,3(

2

3
)U

⇒ P = P2,3P1,3, L = E1,2(
3

5
)E1,3(

2

5
)E2,3(

2

3
)

This shows why it made sense to move the stored multipliers in the lower triangle together with
the rest of their row during partial pivoting. We would have obtained an erroneous L otherwise.

We can now solve the original system as follows:

Ax = b

⇒ PAx = Pb

⇒ LUx = Pb

By making the substitution Ux = y, we first solve the triangular system Ly = Pb with forward
substitution, and then the triangular system Ux = y with back substitution. For the first system,
Ly = Pb, we get:

y1 = 4
2

5
y1 + y2 = 10

3

5
y1 +

2

3
y2 + y3 = 1

which has solution (y1, y2, y3) = (4, 425 ,−7). We then solve Ux = y:

5x+ 4y + 3z = 4

−3

5
y − 16

5
z =

42

5
7

3
z = −7

which yields the final solution of (x, y, z) = (1, 2,−3). This process of solving two triangular systems
in succession can repeated for multiple right-hand sides, while L, U , and P need only be calculated
once.

3



For efficiency in programming, we can store the swaps in a vector of length 2 (= n−1), since we
don’t swap the last row with anything at the end of the Gaussian elimination. So in the example
above, the vector (3, 3) records a P1,3 followed by a P2,3 (i.e., position 1 in the vector stores what row
1 was swapped with during elimination, and position 2 has what row 2 was subsequently swapped
with). (Of course, in most of today’s programming languages, arrays are zero based, so the first
entry is really row 0.) In the case no swapping taking place, the ith position in this vector will be
i itself.

4


