
55 Lines of C++
Automated Unit Testing On The Cheap

Chuck Allison, Utah Valley University — February 20, 2014

Automated Unit Testing
Unit Testing is a crucial component of developing quality software. A “unit” is a small, logically

indivisible software component, such as a function, class or module—any executable artifact that the
developer perceives as a building block in constructing software.

Automated unit tests typically consist of a sequence of boolean expressions that are expected to
be true. For example, suppose you want to test the basic operations of a stack class—push,
pop, top, and size. Since the standard stack class template in C++ does not throw exceptions,
we will test the following wrapper of std::stack, Stack, which does throw exceptions, to
illustrate how to test exceptions as well.

#include <stack>
#include <stdexcept>

template<typename T>
class Stack {
 std::stack<T> data;
public:
 T& top() {
 if (data.size() == 0)
 throw std::logic_error("underflow");
 return data.top();
 }
 const T& top() const {
 if (data.size() == 0)
 throw std::logic_error("underflow");
 return data.top();
 }
 void push(const T& t) {
 data.push(t);
 }
 void pop() {
 if (data.size() == 0)
 throw std::logic_error("underflow");
 data.pop();
 }
 size_t size() const {
 return data.size();
 }
};

55 LINES OF C++ — CHUCK ALLISON 1

The test framework described in this article provides the following functions in the
header file, test.h:

test_(<expr>)
throw_(<expr>,<exc_type>)
nothrow_()
succeed()
fail()
report_()

If the expression passed to test_ is true (or non-zero), a “success counter” is
incremented. If the expression evaluates to false (or zero), a “fail counter” is incremented and
a message is printed. Execution continues in either case. Users call fail_ to arbitrarily
increment the fail counter (rarely needed). A succeed_ function that increment the success
counter is also provided.

The throw_ function is used to make sure that exceptions are thrown for corner cases.
The first argument is the expression intended to evoke an exception, and the second
argument is the type of the exception. If the exception occurs, the success counter is
incremented, otherwise a message is printed and the fail counter increases, just like with
test_. The nothrow_ function considers an exception a failure, and updates the fail count.

To review the final results, users call report_. All output operations go to standard
output (cout).

The following test driver shows how to use test.h with the Stack class above.

#include “test.h”

int main() {
 Stack<int> stk;
 test_(stk.size() == 0);

 // Test Exceptions (top and pop are invalid on an empty stack)
 throw_(stk.top(),logic_error);
 throw_(stk.pop(),logic_error);
 nothrow_(stk.size());

 // Test push and top
 stk.push(1);
 test_(stk.top() == 1);
 test_(stk.size() == 1);
 stk.push(2);
 test_(stk.top() == 2);
 test_(stk.size() == 2);

 // Test pop

55 LINES OF C++ — CHUCK ALLISON 2

 stk.pop();
 test_(stk.top() == 1);
 test_(stk.size() == 1);
 stk.pop();
 test_(stk.size() == 0);
 throw_(stk.top(),logic_error);
 throw_(stk.pop(),logic_error);

 report_();
}

The output reported is:

Test Report:

 Number of Passes = 13
 Number of Failures = 0

To see what output looks like with errors, suppose we change the exception type
expected in the first call to throw_ to runtime_error, and the expression in the first call to test
to stk.top() == 10. The output then becomes:

THROW FAILURE: stk.top() in file /Users/chuck/UVU/3370/stack_test.cpp on line 7
FAILURE: stk.top() == 10 in file /Users/chuck/UVU/3370/stack_test.cpp on line 12

Test Report:

 Number of Passes = 11
 Number of Failures = 2

The Code
Except for succeed_, the “functions” in test.h are actually macros that take advantage of

the power of the preprocessor. In particular, this is how the name of the file and line numbers
are obtained. Here’s the code.

#ifndef TEST_H
#define TEST_H
#include <cstddef>
#include <iostream>
using std::size_t;

// Unit Test Scaffolding: Users call test_, fail_, succeed_, throw_, nothrow_, and report_
// AUTHOR: Chuck Allison (Creative Commons License, 2001 - 2014)

namespace {
 size_t nPass = 0;
 size_t nFail = 0;
 void do_fail(const char* text, const char* fileName, long lineNumber) {

55 LINES OF C++ — CHUCK ALLISON 3

 std::cout << "FAILURE: " << text << " in file " << fileName
 << " on line " << lineNumber << std::endl;
 ++nFail;
 }
 void do_test(const char* condText, bool cond, const char* fileName, long lineNumber) {
 if (!cond)
 do_fail(condText, fileName, lineNumber);
 else
 ++nPass;
 }
 void succeed_() {
 ++nPass;
 }
 void report_() {
 std::cout << "\nTest Report:\n\n";
 std::cout << "\tNumber of Passes = " << nPass << std::endl;
 std::cout << "\tNumber of Failures = " << nFail << std::endl;
 }
}
#define test_(cond) do_test(#cond, cond, __FILE__, __LINE__)
#define fail_(text) do_fail(text, __FILE__, __LINE__)
#define throw_(expr,T) \
 try { \
 expr; \
 std::cout << "THROW "; \
 do_fail(#expr,__FILE__,__LINE__); \
 } catch (T) { \
 ++nPass; \
 } catch (...) { \
 std::cout << "THROW "; \
 do_fail(#expr,__FILE__,__LINE__); \
 }

#define nothrow_(expr) \
 try { \
 expr; \
 ++nPass; \
 } catch (...) { \
 std::cout << "NOTHROW "; \
 do_fail(#expr,__FILE__,__LINE__); \
 }
#endif

As you can see, the test_ macro “string-izes” (via the # operator) the expression and passes
the string representation, the evaluated expression, the file name (via the built-in __FILE__
macro) and line number (the built-in __LINE__ macro) to another function, do_test, which
processes the expression appropriately. The function do_fail exists only to process an explicit
user call to fail_.

The throw_ macro attempts to catch an exception of the indicated type. If no exception
occurs, or if an exception of an incompatible type occurs, a failure is flagged.

That’s it! 55 lines of C++.

55 LINES OF C++ — CHUCK ALLISON 4

	55 Lines of C++
	Automated Unit Testing On The Cheap
	Automated Unit Testing
	The Code

