Piles of Sand, Redux

by Chuck Allison

If my previous article left you desperately wanting to know why certain compilers miscalculate $\sin (x)$ for large arguments and why some get it right, your wait is over.

The results I reported for $\sin \left(10^{30}\right)$ are shown in figure 1.

And the winner is . . . Windows Calculator! Read on to discover why.

Recall from the previous article that spacing between floating-point numbers changes every time you cross a power of the floatingpoint base (2 for IEEE numbers) and that the spacing between numbers near x is 2^{1-p+e}, where p is the precision (24 for float, 53 for double) and e is the exponent of 2 used in the binary IEEE representation of x.

Granted, you may never need to compute $\sin \left(10^{30}\right)$-or the sine of anything for that matter-but we all want that warm, fuzzy feeling that we can trust code libraries.

```
Microsoft Visual C++ 2005
GNU g++ 3.4.4 (under Cygwin)
Java SDK 1.5.0_08
Python 2.5 -0.75626273033357649
HP 11C calculator -0.863505811
Windows Calculator
```

Figure 1

In the case of $\mathrm{x}=10^{30}, \mathrm{n}$ is approximately 3.18 * 10^{29}. Can you say "integer overflow"? It would take ninety-nine bits to store such a signed integer. Unless you have 128 -bit hardware handy, it is not feasible to even attempt the calculation, and even with 128 bits, things break at $5.345 * 10^{38}$ anyway. Since integers overflow silently, the problem can go undetected.

So how do they compute $\sin (\mathrm{x})$, anyway? Algorithms for $\sin (x)$ take advantage of the periodicity of trigonometric functions by reducing x to an "equivalent" value in a small range about zero. Most implementations subtract the appropriate multiple of π or $\pi / 2$ to end up in the intervals $[-\pi / 2, \pi / 2]$ or $[-\pi / 4, \pi / 4]$, respectively. And that's where the difficulty lies.

Consider what happens when determining the number n, such that $t=x-n \pi$ is in the interval $[-\pi$ $/ 2, \pi / 2]$ and $\sin (t)= \pm \sin (x)$. It turns out that n is the closest integer to x / π, so statements such as the following are executed:

```
int n = int(x/pi + 0.5*sign(x));
t = x - n*pi;
```

Even if you had all the bits you needed, another problem arises in computing the nearest integer to x / π. Since the expression $\mathrm{x} / \mathrm{pi}+0.5 * \operatorname{sign}(\mathrm{x})$ yields a floating-point number, there better not be any integer "holes" in the vicinity. But for $\mathrm{x}=$ 10^{30}, the exponent in the IEEE representation of x / π is 98 (because $10^{30} / \pi=1.00000001 \ldots * 2^{98}$), making the inter-number
spacing there $2^{98.52} \approx 7.04 \times 10^{13}$. Uh, that skips over quite a few integers, so the chances of finding the nearest integer to 10^{30} / π are slim to nonexistent!

What should library developers do? According to William Kahan, the "Old Man of Floating-point," they should return NaN when they can't guarantee an acceptable answer. NaN , which stands for Not a Number, is a special IEEE floating-point value that taints all calculations it touches. Once you get a NaN , you can't get rid of it, as the code snippet in listing 1 illustrates.

Returning a NaN is much better than misleading users.

Infinity is another IEEE value that comes in handy. It is well behaved in that if you divide a number by it, you get 0 , as expected. This allows certain formulas to play nice when dividing by zero, such as the one from electronics shown in listing 2.

In the first calculation, $1.0 / \mathrm{x}$ evaluates to infinity, so the final result is $1 / \infty$ $=0$. The second invocation returns $1 /(0$ $+1 / 2$) $=2$.

Now, why did Windows Calculator compute the right answer for $\sin \left(10^{30}\right)$? Because it uses a 128 -bit representation for its floating-point numbers-so none of the problems described above apply. To validate its glorious triumph, the program in listing 3 uses Java's arbitrary-precision arithmetic class, BigDecimal, to compute the correct n that reduces 10^{30} to its corresponding argument in $[-\pi / 2, \pi / 2]$. From there it just uses the built-in sine function. The result agrees with Windows Calculator.

Tuning Algorithms

Understanding floating-point spacing is the key to getting the most from numeric computations. Consider the method of "bisection" for finding roots of equations. It starts with an interval $[a, b]$ that contains a sign change in the function $f(x)$. It first inspects the interval's midpoint, $x=(a+b) / 2$. If $f(x) \neq 0$, it replaces either a or b with x , depending on whether the interval (a, x) or the interval (x, b) preserves the sign change. Listing 4 shows how some people implement it.

The variable tol is the user's "tolerance"-meaning if a and
Listing 2

Listing 3

```
#include <limits>
#include <iostream>
using namespace std;
double resistance(double x, double y) {
    return (1.0 / (1.0/x + 1.0/y));
}
int main() {
    cout << resistance(0.0, 1.0) << endl;
    cout << resistance(2.0, numeric_limits<double>::infinity()) << endl;
}
// Output:
0
2
```

```
import java.math.*;
class BigSine {
    static BigInteger n;
    static BigInteger two = new BigInteger("2");
    public static void main(String[] args) {
        BigDecimal t = residue(new BigDecimal("1.0e30"));
        System.out.println("t = " + t.toEngineeringString());
        System.out.print("sin t = ");
        if (n.mod(two).equals(BigInteger.ONE))
            System.out.print("-");
        System.out.println(Math.sin(t.doubleValue()));
    }
    static BigDecimal residue(BigDecimal arg) {
        // Find nearest integer to arg/pi
        String pi1 = "3.14159265358979323846264338327";
        String pi2 = "9502884197169399375105820974944";
        BigDecimal pi = new BigDecimal(pi1 + pi2);
        BigDecimal quotient = arg.divideToIntegralValue(pi);
        System.out.println("n = " + quotient);
        n = quotient.toBigInteger();
        return arg.subtract(quotient.multiply(pi));
    }
}
// Output:
n = 318309886183790671537767526745
t = 0.090239323898053028031181587905554138877362184227620505122720
sin t = -0.09011690191213806
```

There are two alternatives. The first is to adjust the tolerance to be no smaller than the inter-number spacing near a and b. While you could use the formula mentioned above to get the exact spacing between floating-point numbers, it is more efficient-and quite sufficient-to compute an approximation for the spacing up front. Recall that:

$$
2^{\mathrm{e}} \leq|x|
$$

where e is the exponent in the IEEE representation of x . Multiplying both sides by $2^{1-\mathrm{p}}$, where p is the floatingpoint precision, we get:

$$
\begin{aligned}
& 2^{1-p+e} \leq 2^{1-p}|\mathrm{x}| \\
& =>\epsilon 2^{e} \leq \epsilon|\mathrm{x}|
\end{aligned}
$$

(Recall from last time that 2^{1-p} is machine epsilon, denoted by ϵ.) Since the term on the left side of the inequality is the spacing in question, we have a ready upper bound for it: $\epsilon|\mathrm{x}|$. With that in mind, we can avoid the possibility of an infinite loop by prefacing the while loop in listing 4 with the statements shown in listing 5. This guarantees that tol does not exceed any of the floating-point spacings in the interval $[a, b]$. Note that machine epsilon is provided for you in C++ via numeric_limits: :epsilon().

If you want to get maximum machine accuracy, you can dispense with the tolerance altogether and just continue bisecting until a and b become adjacent doubles, or until you get lucky and stumble on a root. As explained earlier, you'll know that a and b are adjacent if $(\mathrm{a}+\mathrm{b}) / 2.0$ comes back as a or b . The version shown in listing 6 checks for that and makes other simplifications.

Summary

Even if you're not a scientific programmer, you likely will use floating-point arithmetic from time to time, or you may test code that does. Understanding the architecture of a floatingpoint number system—and, in particular, the effects of inter-number spacing-can help you attain the highest accuracy possible while avoiding classic blunders. \{end\}

Chuck Allison developed software for twenty years before becoming a professor of computer science at Utab Valley State College. He was senior editor of the $\mathrm{C} / \mathrm{C}++$ Users Journal and is

```
double bisect(double tol, double a, double b, double f(double)) {
    while ((b-a) > tol) {
        double c = (a+b)/2.0;
        if (f(a)*f(c) < 0)
            b = c;
        else if (f(b)*f(c) < 0)
            a = c;
        else
            return c;
    }
    return (a + b) / 2.0;
}
```

Listing 4

```
double eps = numeric_limits<double>::epsilon();
tol = max(tol, eps*abs(a));
tol = max(tol, eps*abs(b));
```

Listing 5

Listing 6

```
double bisect(double a, double b, double f(double)) {
```

double bisect(double a, double b, double f(double)) {
for (;;) {
for (;;) {
double c = (a+b)/2.0;
double c = (a+b)/2.0;
// Are a and b adjacent?
// Are a and b adjacent?
if (c == a || c == b)
if (c == a || c == b)
return a; // Or could return b
return a; // Or could return b
double fc = f(c);
double fc = f(c);
if (fc == 0.0) {
if (fc == 0.0) {
return c; // Stumbled across a zero.
return c; // Stumbled across a zero.
}
}
else if (sign(f(a)) == sign(fc))
else if (sign(f(a)) == sign(fc))
a = c;
a = c;
else
else
b}=\textrm{c}
b}=\textrm{c}
}
}
}
}
(c

```
        (c
```

founding editor of The C++ Source. Chuck is the author of two C++ books and gives onsite training in C++, Python, and design patterns.

