
In the case of x = 1030, n is approxi-
mately 3.18 * 1029. Can you say
“integer overflow”? It would take
ninety-nine bits to store such a signed
integer. Unless you have 128-bit hard-
ware handy, it is not feasible to even
attempt the calculation, and even with
128 bits, things break at 5.345 * 1038

anyway. Since integers overflow silent-
ly, the problem can go undetected.

Even if you had all the bits you needed, another problem
arises in computing the nearest integer to x/π. Since the expres-
sion x/pi + 0.5*sign(x) yields a floating-point number, there
better not be any integer “holes” in the vicinity. But for x =
1030, the exponent in the IEEE representation of x/π is 98 (be-
cause 1030/π = 1. 00000001… * 298), making the inter-number

If my previous article left you desperately
wanting to know why certain compilers mis-
calculate sin(x) for large arguments and
why some get it right, your wait is over.

The results I reported for sin(1030)are
shown in figure 1.

And the winner is . . . Windows Calcula-
tor! Read on to discover why.

Recall from the previous article that spac-
ing between floating-point numbers changes
every time you cross a power of the floating-
point base (2 for IEEE numbers) and that the
spacing between numbers near x is 21-p+e,
where p is the precision (24 for float, 53
for double) and e is the exponent of 2 used
in the binary IEEE representation of x.

Granted, you may never need to compute
sin(1030)—or the sine of anything for that
matter—but we all want that warm, fuzzy
feeling that we can trust code libraries.

So how do they compute sin(x),
anyway? Algorithms for sin(x) take
advantage of the periodicity of
trigonometric functions by reducing x

to an “equivalent” value in a small
range about zero. Most implementa-
tions subtract the appropriate
multiple of π or π /2 to end up in the
intervals [-π /2, π /2] or [-π /4, π /4],
respectively. And that’s where the dif-
ficulty lies.

Consider what happens when de-
termining the number n, such that t=x-nπ is in the interval [-π
/2,π /2] and sin(t)= ±sin(x). It turns out that n is the closest
integer to x/π, so statements such as the following are executed:

int n = int(x/pi + 0.5*sign(x));

t = x - n*pi;

IS
TO
C
K
P
H
O
TO

Piles of Sand, Redux
by Chuck Allison

Code Craft

10 BETTER SOFTWARE AUGUST 2007 www.StickyMinds.com

Figure 1

Microsoft Visual C++ 2005 -0.756263

GNU g++ 3.4.4 (under Cygwin) 0.00933147

Java SDK 1.5.0_08 0.009331468931175825

Python 2.5 -0.75626273033357649

HP 11C calculator -0.863505811

Windows Calculator -0.090116901912138058030386428952987

Listing 1

double x = sqrt(-1.0); // One way to beget a NaN

cout << x << endl;

double y = x + 2.0; // Can’t shake it!

cout << y << endl;

// Output:

-nan

-nan

b are at most tol apart, users will call that “close enough.” Can
you see the problem? Of course you can! The spacing between
floating-point numbers near a or b might be greater than tol, re-
sulting in an infinite loop. When that happens, the expression
(a+b)/2.0 will return either a or b, and we’re off to Spin City!

spacing there 298-52 ≈ 7.04 x 1013. Uh,
that skips over quite a few integers, so
the chances of finding the nearest inte-
ger to 1030/π are slim to nonexistent!

What should library developers
do? According to William Kahan, the
“Old Man of Floating-point,” they
should return NaN when they can’t
guarantee an acceptable answer. NaN,
which stands for Not a Number, is a
special IEEE floating-point value that
taints all calculations it touches. Once
you get a NaN, you can’t get rid of it,
as the code snippet in listing 1 illus-
trates.

Returning a NaN is much better
than misleading users.

Infinity is another IEEE value that
comes in handy. It is well behaved in
that if you divide a number by it, you
get 0, as expected. This allows certain
formulas to play nice when dividing by
zero, such as the one from electronics
shown in listing 2.

In the first calculation, 1.0/x evalu-
ates to infinity, so the final result is 1/∞
= 0. The second invocation returns 1/(0
+ ½) = 2.

Now, why did Windows Calculator
compute the right answer for
sin(1030)? Because it uses a 128-bit
representation for its floating-point
numbers—so none of the problems de-
scribed above apply. To validate its
glorious triumph, the program in listing
3 uses Java’s arbitrary-precision arith-
metic class, BigDecimal, to compute
the correct n that reduces 1030 to its cor-
responding argument in[-π /2,π /2].
From there it just uses the built-in sine
function. The result agrees with Win-
dows Calculator.

Tuning Algorithms
Understanding floating-point spac-

ing is the key to getting the most from
numeric computations. Consider the
method of “bisection” for finding
roots of equations. It starts with an in-
terval [a,b] that contains a sign
change in the function f(x). It first
inspects the interval’s midpoint, x = (a+b)/2. If f(x) ≠ 0, it re-
places either a or b with x, depending on whether the interval
(a,x) or the interval (x,b) preserves the sign change. Listing 4
shows how some people implement it.

The variable tol is the user’s “tolerance”—meaning if a and

www.StickyMinds.com AUGUST 2007 BETTER SOFTWARE 11

Code Craft

Listing 2

#include <limits>

#include <iostream>

using namespace std;

double resistance(double x, double y) {

return (1.0 / (1.0/x + 1.0/y));

}

int main() {

cout << resistance(0.0, 1.0) << endl;

cout << resistance(2.0, numeric_limits<double>::infinity()) << endl;

}

// Output:

0

2

Listing 3

import java.math.*;

class BigSine {

static BigInteger n;

static BigInteger two = new BigInteger("2");

public static void main(String[] args) {

BigDecimal t = residue(new BigDecimal("1.0e30"));

System.out.println("t = " + t.toEngineeringString());

System.out.print("sin t = ");

if (n.mod(two).equals(BigInteger.ONE))

System.out.print("-");

System.out.println(Math.sin(t.doubleValue()));

}

static BigDecimal residue(BigDecimal arg) {

// Find nearest integer to arg/pi

String pi1 = "3.14159265358979323846264338327";

String pi2 = "9502884197169399375105820974944";

BigDecimal pi = new BigDecimal(pi1 + pi2);

BigDecimal quotient = arg.divideToIntegralValue(pi);

System.out.println("n = " + quotient);

n = quotient.toBigInteger();

return arg.subtract(quotient.multiply(pi));

}

}

// Output:

n = 318309886183790671537767526745

t = 0.090239323898053028031181587905554138877362184227620505122720

sin t = -0.09011690191213806

There are two alternatives. The first
is to adjust the tolerance to be no
smaller than the inter-number spacing
near a and b. While you could use the
formula mentioned above to get the
exact spacing between floating-point
numbers, it is more efficient—and
quite sufficient—to compute an ap-
proximation for the spacing up front.
Recall that:

2e ≤ |x|

where e is the exponent in the IEEE
representation of x. Multiplying both
sides by 21-p, where p is the floating-
point precision, we get:

21-p+e ≤ 21-p|x|
=> ε2e ≤ ε|x|

(Recall from last time that 21-p is machine
epsilon, denoted by ε.) Since the term on
the left side of the inequality is the spac-
ing in question, we have a ready upper
bound for it: ε|x|. With that in mind, we
can avoid the possibility of an infinite
loop by prefacing the while loop in list-
ing 4 with the statements shown in listing
5. This guarantees that tol does not
exceed any of the floating-point spacings
in the interval [a,b]. Note that machine
epsilon is provided for you in C++ via
numeric_limits::epsilon().

If you want to get maximum ma-
chine accuracy, you can dispense with
the tolerance altogether and just con-
tinue bisecting until a and b become
adjacent doubles, or until you get
lucky and stumble on a root. As ex-
plained earlier, you’ll know that a and
b are adjacent if (a+b)/2.0 comes back
as a or b. The version shown in listing 6 checks for that and
makes other simplifications.

Summary
Even if you’re not a scientific programmer, you likely will

use floating-point arithmetic from time to time, or you may test
code that does. Understanding the architecture of a floating-
point number system—and, in particular, the effects of
inter-number spacing—can help you attain the highest accuracy
possible while avoiding classic blunders. {end}

Chuck Allison developed software for twenty years before be-
coming a professor of computer science at Utah Valley State
College. He was senior editor of the C/C++ Users Journal and is

founding editor of The C++ Source. Chuck is the author of two
C++ books and gives onsite training in C++, Python, and design
patterns.

Code Craft

12 BETTER SOFTWARE AUGUST 2007 www.StickyMinds.com

Does knowing that there are
integer "holes" among

floating-point numbers explain any
strange floating-point results in

your applications?
What can/will you do about it?

�

Follow the link on the StickyMinds.com
homepage to join the conversation.

Listing 4

double bisect(double tol, double a, double b, double f(double)) {

while ((b-a) > tol) {

double c = (a+b)/2.0;

if (f(a)*f(c) < 0)

b = c;

else if (f(b)*f(c) < 0)

a = c;

else

return c;

}

return (a + b) / 2.0;

}

Listing 5

double eps = numeric_limits<double>::epsilon();

tol = max(tol, eps*abs(a));

tol = max(tol, eps*abs(b));

double bisect(double a, double b, double f(double)) {

for (;;) {

double c = (a+b)/2.0;

// Are a and b adjacent?

if (c == a || c == b)

return a; // Or could return b

double fc = f(c);

if (fc == 0.0) {

return c; // Stumbled across a zero.

}

else if (sign(f(a)) == sign(fc))

a = c;

else

b = c;

}

}

Listing 6

