
planning system for the US Air Force. We used COBOL for the
I/O and FORTRAN for the numeric processing, because that’s
where those respective languages excelled.

C and C++ are primarily systems programming languages;
therefore, power and efficiency are top priority. The C mantra
has always been, “Trust the programmer.” It’s true that not all

programmers deserve that trust—programming outside of a
sandbox requires some maturity. Many, for example, find id-
iomatic C code like that in figure 4 troublesome.

Using the expression *s++ is a well-entrenched idiom, but
for many programmers the condition within the while state-
ment should be a comparison rather than an assignment
statement. This function is a simplified version of the standard
strpy function, taken right from Kernighan and Ritchie’s
The C Programming Language. Here’s what the authors say
about it:

Although this may seem cryptic at first sight, the no-
tational convenience is considerable, and the idiom

10 BETTER SOFTWARE APRIL 2007 www.StickyMinds.com

Code Craft

The Roof Is Going to Go
by Chuck Allison

G
E

T
T

Y
IM

A
G

E
S

In October 1993, the Associated Press pub-
lished an article about a German tourist on a US
flight who approached the cockpit while the
plane was taking off. When a flight attendant
asked him to sit down, he said, “No, no, the
roof would go!” Naturally, the flight attendant
took that as a bomb threat, so the plane landed
and the man landed—in jail. It turns out he just
needed to use the toilet. According to the article,
the phrase “Then the roof goes” is a German id-
iom for “having to go.” It’s too bad he spent
nine months in jail.

Moral of the story: Idioms don’t translate.
It’s difficult to learn to speak like a native in

a new language, but it is doable and desirable.
As programmers, we should use programming languages as
they were intended, including understanding and using their id-
ioms.

Speak Like a Native
Back in olden times, FORTRAN did not have an else state-

ment or a compound statement construct. To implement an
if-then-else construct, you had to use GOTOs (see figure 1).

That’s just how it was done. It was a FORTRAN idiom.
My second language was Algol. You’ll never guess how I

first rendered the fragment in figure 1 in that language (see fig-
ure 2).

Hey, I’m a math major—what did you expect? Not to worry;
I soon saw the light. That is, I learned the Algol way (see figure
3).

Most programming languages have their individual claims to
fame, which dictate when to use them and what common id-
ioms apply. My first major project out of school was a flight

Figure 1

IF (X .LE. 4) GOTO 10
Y = F(X)
GOTO 20

10 Y = G(X)
20 CONTINUE

Figure 2

if x <= 4 then goto ten;
y := f(x);
goto twenty;

ten: y := g(x);
twenty: …

Figure 3

if x > 4 then
y := f(x)

else
y := g(x)

Figure 4

void f(char *s, char *t)
{

while (*s++ = *t++)
;

}

www.StickyMinds.com APRIL 2007 BETTER SOFTWARE 11

Code Craft

should be mastered, because you will see it frequently
in C programs.

One of the guiding principles of C++ is, “You don’t pay for
what you don’t use.” That’s why there is no “mother of all
classes” in C++ as there is in other object-oriented languages.
Where you might use java.lang.Object in Java, you would
more likely use templates in C++.

A common template idiom in C++ is known as CRTP, which
stands for “Curiously Recurring Template Pattern.” The code in
figure 5 defines a base class that will make any of its derived
classes a singleton. Deriving from Singleton<T> requires
CRTP.

The copy constructor and assignment operator are private
and unimplemented, so no objects can inadvertently come to
life by copy or assignment. The default constructor is protected,
so only derived objects can invoke it. The type of the object to

be made a singleton is the template parameter T. This means
that T must be a template argument to Singleton at its own
(i.e., T’s) point of definition, as the code in figure 6 illustrates.

The first line may seem odd—defin-
ing a class in terms of itself—but this is
what is meant by CRTP. This works
because the Singleton template does
not need to know the internals of T (its
only use of a T object is the local static
object in instance()—since it’s static,
it’s not part of a Singleton<T> object,
which has size zero). With the Sin-

gleton template you can make any
derived class a singleton by making its

constructor non-public and its own instantiation of Singleton
a friend, so Singleton::instance can instantiate it. This par-
ticular idiom requires the derived class to have a default
constructor.

Python uses a different idiom for a singleton maker. Python
has a universal object class, and, as in Java, each class in
Python has an associated class object. When you create an ob-
ject in Python, the special method object.__new__() uses the

corresponding class object to build your object, and then calls
your constructor (named __init__), if you have defined one.
You can define your own __new__ method for any class, which
is the key for a Singleton superclass (see figure 7).

This Singleton class has a (static) dictionary (aka hash
table), __singletons, which stores a unique object for each
class that inherits from Singleton. Whenever an object of any
subclass is created, __Singleton__new__ executes. It first
checks to see if the class object (cls) for the instance to be creat-
ed is already in __singletons. If so, it returns the existing
unique object for that class. Otherwise, it creates a new class
object/object pairing and stores it in __singletons, calling
__object.__new__ to allocate storage. Using it is way cinchy
(see figure 8).

KnowYour Library
Speaking of COBOL, I once worked at a large organization

that was trying to convert its COBOL programmers to C pro-
grammers. Talk about verbose code. I took one of their modules

Figure 5

template<class T> class Singleton {
Singleton(const Singleton&);
Singleton& operator=(const Singleton&);

protected:
Singleton() {}
virtual ~Singleton() {}

public:
static T& instance() {
static T theInstance;
return theInstance;

}
};

Figure 6

// A sample class to be made a Singleton
class MyClass : public Singleton<MyClass> {
int x; //represents the set of all attributes

protected:
friend class Singleton<MyClass>;
MyClass() { x = 0; }

public:
void setValue(int n) { x = n; }
int getValue() const { return x; }

};

Figure 7

class Singleton(object):
__singletons = {}
def __new__(cls, *args, **kwds):

if not cls.__singletons.has_key(cls):
cls.__singletons[cls] = object.__new__(cls)

return cls.__singletons[cls]

Figure 8

class Foo(Singleton):
def __init__(self, x):

self.x = x

print Foo(10) is Foo(20) # True: same object!

Figure 9

ifstream inf("pulse.dat");
vector<int> nums;

copy(istream_iterator<int>(inf), istream_iterator<int>(), back_inserter(nums));
transform(nums.begin(), nums.end(), nums.begin(), bind2nd(minus<int>(), 12));
cout << "sum = " << accumulate(nums.begin(), nums.end(), 0) << endl;
cout << "height = " << *max_element(nums.begin(), nums.end()) << endl;
copy(nums.begin(), nums.end(), ostream_iterator<int>(cout, " "));

12 BETTER SOFTWARE APRIL 2007 www.StickyMinds.com

Code Craft

and rewrote it in idiomatic C—and it came out one-seventh its
original size. A key problem was that the COBOL programmers
had no notion of a library—to them, everything was just verbs
and data structures. Consequently, they reinvented parts of the
standard C library over and over again. Not only is that a
wasteful practice but it also is error prone, since the program-
mers weren’t disposed to take the time to validate and optimize
the little utilities they threw together on the fly. Library develop-
ers are specialists at making reliable, efficient, reusable code.
Use standard libraries.

One incredibly brilliant library that (sadly) is underused is
the standard C++ algorithms library. It contains more than fifty
commonly needed functions that are generic, type-safe, effi-
cient—and likely to save you a noticeable amount of time as
well as code real estate.

As an example, I recently upgraded a client’s analysis tool
for digitized data. The original system was C-like C++ code full
of loops. Evidently the developer, an able engineer, didn’t know
that it is possible to read in a stream of data, change it, and out-
put it without a single explicit loop. Figure 9 shows how.

The first copy reads all the space-delimited integers from the
file “pulse.dat” into the sequence nums. The call to transform

subtracts twelve from each element. The accumulate algorithm
computes the sum of the numbers, and max__element returns
an iterator (pointer) to the largest number. The final call to

copy prints all of the numbers to the standard output stream. If
you’re not familiar with the C++ algorithms library, this may
look strange, but this is part of speaking C++ as a native—being
succinct and declarative.

Expending the effort to master idioms is good practice. You
won’t be a native speaker until you do. {end}

Chuck Allison developed software for twenty years before be-
coming a professor of computer science at Utah Valley State
College. He was senior editor of the C/C++ Users Journal and is
founding editor of The C++ Source. He is also the author of two
C++ books and gives onsite training in C++, Python, and De-
sign Patterns.

It’s interesting to consider what has changed andwhat
has stayed the same as programming languages have
evolved over the past half century. What features are the
most lasting?Which idiomsmake certain languages your

“favorites?” Do you have any new idioms in mind?

Follow the link on the StickyMinds.com homepage
to join the conversation.

�

