
Both functions return a new, single-valued function repre-
senting the composition of the functions in the original list. So, if
you have three like-typed functions, f, g, and h, you can com-
pose them like this:

c = compose(f,g,h)

Every call to c(x) will compute f(g(h(x))).
How can we accomplish this in C++? It won’t be a one-liner, but
there is a reasonable solution. But first, let’s start with a non-

generic version and then generalize it.

A Non-Generic Example
We’ll assume the data type is double and will use C++’s

accumulate algorithm, which works just like Python’s re-

duce. Since we can’t return functions in C++, we’ll create a
function object (a type implementing operator()), as shown
in listing 2.

With a vector, v, of single-valued real functions, using their
composition is straightforward:

IS
TO
CK
PH

O
TO

For software to be reusable, it must be usable in a variety of
contexts. An important attribute of reusability at the code level
is genericity. Generic software can operate, unmodified, on a
variety of object types. Dynamically typed languages provide
genericity naturally. Consider the following Python function
that determines the smallest of whatever it receives as a parame-
ter:

def smallest(stuff):

assert len(stuff) > 0

theMin = stuff[0]

for x in stuff[1:]:

if x < theMin: theMin = x

return theMin

You can call this function with any type of sequence:

>>> smallest([1,2,3])

1

>>> smallest("cba")

a

The only constraints on the parameter stuff are that it is an
iterable entity and that its contained objects support the less-
than operator. Hence, smallest is a generic function.

Statically typed languages usually don’t have such flexibility
out of the box, but that is changing. Modern languages such as
Eiffel, C++, Java, C#, and D have added generic programming
capability while retaining the safety and efficiency that comes
with static type checking.

Consider an everyday programming task: applying a series
of transformations to data. Data transformations usually in-
volve calling a series of functions on individual data elements.
While it is simple to write separate functions and apply them in
sequence, it can be even easier to assemble existing functions
into a reusable, composite function. In other words, we want
support for function composition.

In the November 2007 Code Craft, I used the following
Python function:

In case you forgot, reduce applies its first argument, a bina-
ry function that I’ll call the applicator, to the first list element
along with the initial value. That result and the next function in
the list become input arguments to a second invocation of the
applicator, and so on, until the list of functions is exhausted and
the accumulated result is obtained. If you prefer a procedural
rendering of compose, see listing 1.

Designing Reusable Software
by Chuck Allison

Code Craft

10 BETTER SOFTWARE JANUARY/FEBRUARY 2008 www.StickyMinds.com

def compose(*funs):

return lambda x: reduce(lambda z,f: f(z), reversed(funs), x)

Listing 1

Listing 1

def compose(*funs):

def apply(x):

result = x

for f in reversed(funs):

result = f(result)

return result

return apply

www.StickyMinds.com JANUARY/FEBRUARY 2008 BETTER SOFTWARE 11

Code Craft

Composer comp(v);

cout << comp(x);

This class has two obvious deficiencies:

1. Only functions of real numbers can be composed.
2. Users must employ std::vector as the data structure.

A Generic Solution
The solution to both flaws is to use templates, as shown in

listing 3.
Sequences in C++ are delimited by iterators, which can be

pointers or objects of classes that implement pointer operations
(operator*, operator->, operator++, etc.). Therefore,
this version of Composer has two template parameters—one for
the data type (T) and one for the iterator type (Iter). Since
the functions need to be applied in the reverse of the order in
which they appear, we use std::reverse_iterator to synthe-
size a reverse iterator type from Iter, which the Composer

constructor initializes appropriately. The caller must provide

the template arguments and iterators. The sample code in listing
4 uses an array to hold pointers to the functions f, g, and h.
The iterator type is therefore a pointer to such pointers-to-func-
tions, as shown in listing 4.

Is more generalization possible? Yes, if we use a forthcoming
feature of C++0x (the imminent update of standard C++), name-
ly, function. The function class template wraps anything that
is callable as a function. This way we can use function objects as
well as function pointers, and even mix the two in the same se-
quence. This feature is available today as Boost.function (see the
StickyNotes for a link). We also will use other template features
of the current version of C++.

All we will require of users is to declare their sequences to
hold compatible instances of function. The new implementa-

Listing 3

// Listing 3: Generalizes the argument and sequence types

template<class T, class Iter>

class Composer {

private:

typedef std::reverse_iterator<Iter> RevIter;

RevIter beg, end;

static T apply(T sofar, T (*f)(T)) {

return f(sofar);

}

public:

Composer(Iter b, Iter e) : beg(RevIter(e)), end(RevIter(b)) {}

T operator()(T x) {

return accumulate(beg, end, x, apply);

}

};

Listing 2

// Listing 2: A non-generic C++ composer (for functions of doubles)

class Composer {

private:

typedef double (*Fun)(double);

vector<Fun> funs;

static double apply(double sofar, double (*f)(double)) {

return f(sofar);

}

public:

Composer(vector<Fun>& fs) : funs(fs) {

reverse(funs.begin(), funs.end());

}

double operator()(double x) {

return accumulate(funs.begin(), funs.end(), x, apply);

}

};

Listing 4

typedef string (*Fun)(string);

Fun funs[] = {f,g,h};

Composer<string, Fun*> comp(funs, funs+3);

cout << comp(x) << endl;

ISO standards for programming

languages are eligible for renewal

every ten years. C++ was

standardized in 1998, and work

began on a new version in 2003.

The new version is expected to be

complete before 2010, hence the

“C++0x” moniker. C++0x will

contain many enhancements and

simplifications, including template

constraints (a.k.a. “concepts”),

lambda functions, and a regular

expression library. Work on a

concurrency model is also in

progress.

ment by three. The divides function
object comes with the standard C++ li-
brary, as does the bind2nd

function-object adaptor, which con-
verts divides into a single-arg
function by fixing its second argument
as the value 3. (See the September
2007 Code Craft article for more on
standard function objects and
bind2nd).

The call to transform processes
an array of four doubles, nums (decla-
ration not shown), applies the
composition of the three given func-
tions, and prints the result to standard
output—all in one statement.

Summary
Let’s review what we have accom-

plished—we have created a reusable
class for function composition, which
can come in handy in data processing,
and we have gained some experience
in designing generic software. The fi-
nal version of Composer is generic in

that it can compose an arbitrary number of
unary, single-valued functions or function ob-
jects of compatible types, and those functions
can reside in an array or in any standard se-
quence container. Composer itself has reused the
standard generic types and functions: accumu-
late, reverse_iterator,

iterator_traits, and function. {end}

Chuck Allison developed software for twenty
years before becoming a professor of computer

science at Utah Valley State College. He was senior editor of the
C/C++ Users Journal and is founding editor of The C++ Source.
He is also the author of two C++ books and gives onsite train-
ing in C++, Python, and Design Patterns. Chuck is a technical
editor for Better Software magazine.

Code Craft

12 BETTER SOFTWARE JANUARY/FEBRUARY 2008 www.StickyMinds.com

Is defining for reuse on your list
of priorities? Do you routinely

use generics?

�

Follow the link on the StickyMinds.com
homepage to join the conversation.

tion of Composer also uses iterator_traits, a C++ feature
that deduces the type to which an iterator points, as shown in
listing 5.

We are assuming that the type pointed to, Fun, is an instance
of function, which happens to have a result_type member.
We use this as the argument type since we expect the functions
we compose to have the same argument and return type.

To make things convenient for the user, we’ll create a func-
tion template that deduces the iterator type from its arguments:

template<class Iter>

Composer<Iter> compose(Iter b, Iter e) {

return Composer<Iter>(b,e);

}

This allows users to embed calls to compose in other con-
texts, as you can see in the sample code in listing 6, which
composes two function objects along with a plain function
pointer.

The first line defines the type Fun as func-

tion<double(double)>, which matches anything that is
callable with a single double argument and returns a double.
The first function, which we create on the fly, divides its argu-

Sticky
Notes

For more on the following topic go to
www.StickyMinds.com/bettersoftware.

� Boost.function

Listing 5

// Listing 5: Generalizes the callable type

template<class Iter>

class Composer {

private:

// Deduce function and return/argument types

typedef typename iterator_traits<Iter>::value_type Fun;

typedef typename Fun::result_type T;

// Declare reverse iterators (see constructor for use)

typedef reverse_iterator<Iter> RevIter;

RevIter beg, end;

// The function called by accumulate

static T apply(T sofar, Fun f) {

return f(sofar);

}

public:

Composer(Iter b, Iter e) : beg(RevIter(e)), end(RevIter(b)) {}

T operator()(T x) {

return accumulate(beg, end, x, apply); // Function Applicator

}

};

Listing 6

// Listing 6

typedef function<double(double)> Fun;

std::list<Fun> funs;

funs.push_back(bind2nd(divides<double>(), 3.0));

funs.push_back(&f); // A plain double (*)(double) function

funs.push_back(bind2nd(plus<double>(), 1.0));

transform(nums, nums+4, ostream_iterator<double>(cout," "),

compose(funs.begin(),funs.end()));

