
the imperative/OO world.
Functional programming, first made accessible through Lisp,

is another powerful programming paradigm that is older than
you might think. Lisp wasn’t really usable until about 1960, but
it is based on Alonzo Church’s lambda calculus, which came al-
most thirty years earlier, so the functional paradigm was fairly
mature before it was realized on a computer. Functional lan-
guages treat functions like they treat built-in types—they can be
passed and returned as values to and from other functions, and
can even be created at runtime. Some very powerful constructs
come to life this way.

Since lists are so central in functional programming, you can
easily create them by placing expressions inside brackets in
Haskell and Python, as shown in listing 1.

The definition of morenums illustrates a list comprehension,

G
ET
TY

IM
A
G
ES

Lee Copeland, managing technical editor of
Better Software magazine, recently wrote of
the Whorfian Hypothesis, which, according
to Wikipedia.org, “argues that the nature of
a particular language influences the habitual
thought of its speakers.” As early as 1957,
Kenneth Iverson, inventor of APL, prefaced
his presentation of that interesting language
with the phrase “Language is a tool of
thought.” His goal was to efficiently process
large arrays of data in multiple dimensions,
so APL sports numerous operators, all very
succinct and mutually orthogonal. When it’s
time to cut code, the programming language
we’re using tends to govern our thoughts. A
C programmer will conjure up appropriate
functions; a Java programmer will see noth-
ing but objects; a developer using Haskell
will traffic in lists and higher-order func-
tions.

Each programming style, or paradigm,
has its claim to fame, and one is not neces-
sarily better than another. A message that
needs to get out nowadays, both in industry
and academia, is that object orientation is just another para-
digm. It has its place and has certainly helped us write
better-organized code for large projects, but it is not the One
True Paradigm—because there isn’t one.

So, should developers be proficient in multiple languages?
Certainly, but it is even more important to master multiple par-
adigms, which is not necessarily the same thing: A language
may or may not force a particular paradigm upon you. Java
pretty much forces you to do objects, so you’ll hurt yourself if
you use it to write simple procedural code or to program in the
functional style, à la Lisp. Likewise, you can do objects in C,
but you have to build up so much scaffolding to support it that
you end up feeling like you’re rubbing a cat backward. Howev-
er, languages like C++, Python, Ruby, D, and CLOS support
multiple paradigms naturally.

An Invitation to Functional Programming
The most commonly used programming styles nowadays

are imperative (aka, procedural), object oriented, and function-
al, but many others exist (e.g., declarative, logic, constraint).
Imperative languages closely mirror computer internals—they
implement instructions that change machine state. The object-
oriented (OO) style of programming is mostly imperative
programming extended with the ability to package data and re-
lated functionality as classes. Most programmers seem to live in

Buddy, CanYou Paradigm?
by Chuck Allison

Code Craft

12 BETTER SOFTWARE NOVEMBER 2007 www.StickyMinds.com

Listing 1

A Python example

>>> nums = [1,2,3,4]

>>> morenums = [x+1 for x in range(4)]

>>> morenums

[1, 2, 3, 4]

www.StickyMinds.com NOVEMBER 2007 BETTER SOFTWARE 13

Code Craft

whereby a list is created through a complex formula. As shown
in listing 2, list comprehensions can traverse multiple sequences
just like nested loops do and can filter out what isn’t wanted.

Several support functions are important in functional pro-
gramming. The map function applies a function to each element
of a list and returns the resulting list:

>>> map(len,["a", "fine", "mess"])

[1, 4, 4]

The map function also accommodates functions whose arity
matches the number of subsequent lists:

>>> map(operator.add, [1,2,3],[4,5,6])

[5, 7, 9]

The reduce function is used to summarize a list, usually re-
ducing it to a single value. For example, to sum the elements of
a list, you could use the following expression:

>>> reduce(operator.add, [1,2,3])

6

In the case of addition, however, it is better to use Python’s
built-in sum function:

>>> sum([1,2,3])

6

The reduce function is handy for other operations, though.
The following expression forms the product of a list:

>>> reduce(operator.mul, [1,2,3])

6

An alternate form of reduce takes a third argument as an
initializer. This comes in handy in case the list happens to be
empty:

>>> reduce(operator.mul, [], 1)

1

As shown in listing 3, without the third argument, there is no

default value to return.
To better under-

stand reduce, suppose
you want to summa-
rize a sequence, s,
containing n values, x0
through xn-1, say,
with the binary func-

tion f. The call reduce(f,s,c) will then compute the following
expression:

f(f(f(…f(f(c, x0), x1)…), xn-3), xn-2), xn-1)

The insight that unlocks the power of reduce is to notice that
the first argument in each call represents the accumulated value up
to that point (which is c initially). With this in mind, here’s a func-
tion that checks to see if any value in a sequence of Booleans is
true:

def any(bools):

return reduce(operator.or_, bools, False)

The function call any([False,True]), for example, computes
or_(or_(False,False),True). The accumulated value at each
call will be True if any value encountered so far is True. The un-
derlined argument above is the initial value from the third
argument in the original call.

Higher-Order Functions
Now consider how to write a function that forms the union

of two sets. The result will have everything from one set and
everything in the other set that isn’t already in the first. There-
fore the initial value can be one of the sets, and the accumulating
function inspects each element in the other set, discarding dupli-
cates. Listing 4 is a first attempt.

Since form_union is a one-liner, we can use a lambda expres-
sion to create the function on-the-fly, instead, as shown in listing 5.

The lambda keyword takes a parameter list followed by a
colon and a single expression.

As listing 6 shows, writing an intersection function is also
a one-liner.

This time the default is the empty set, and ele-
ments of t are retained only if they are also
elements of s.

A function that takes other functions as pa-
rameters or that returns a function as a result is
known as a higher-order function. The map and
reduce functions are examples that take a func-Listing 3

>>> reduce(operator.mul, [])

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: reduce() of empty sequence with no initial value

Listing 4

def union(s,t):

def form_union(sofar,x):

return sofar + ([] if x in s else [x])

return reduce(form_union, t, s)

Listing 2

>>> set1 = 'abc' # A string is a special sequence holding ASCII code points

>>> set2 = [1,2,3] # A sequence of integers

>>> [(x,y) for x in set1 for y in set2 if x != 'b' if y < 3]

[('a', 1), ('a', 2), ('c', 1), ('c', 2)]

If there are no functions in
the list funs, then compose re-
turns the identity function.
Otherwise, it returns a series
of nested invocations on the
free parameter x—just what
we wanted, and all in one line!
An example that validates
compose is shown in listing 8,
which prints the first ten odd
numbers by applying 2x+1 to

the list [0,1,…,9].

Summary
The object paradigm is just one of many that a software de-

veloper should have in his arsenal. A precursor to generic
programming, functional programming is especially powerful
in constructing succinct, flexible solutions that process se-
quences of data regardless of type. I have shown examples in
Python, but many languages support functional programming.
Languages—such as C++, Python, and the increasingly popular
D—that support multiple styles of programming tend to get you
to an acceptable software solution more directly than those that
don’t. {end}

Chuck Allison developed software for twenty years before be-
coming a professor of computer science at Utah Valley State

College. He was senior editor of
the C/C++ Users Journal and is
founding editor of The C++
Source. Chuck is also the author
of two C++ books and gives on-
site training in C++, Python,
and design patterns.

tion as a parameter but return a computed value, not a func-
tion. In an ambitious effort to convince you of the power of
functional programming (and of Python!), the next example il-
lustrates both.

Consider how you would formulate the composition of an
arbitrary number of unary functions. Given the list of functions
[f,g,h], we want to create a new function that, when given the
argument x, computes f(g(h(x)))—but for any number of
functions. Since reduce traverses sequences left to right, we’ll
need to reverse the list of functions so that h is applied first. The
accumulator function should take the current accumulated re-
sult as its first parameter, the next function in the list as a
second parameter, and apply the latter to the former as the new
accumulated result. The return value should itself be a function
that takes a single parameter (x above). All the above verbiage
can be reduced to the one-line function shown in listing 7.

Code Craft

14 BETTER SOFTWARE NOVEMBER 2007 www.StickyMinds.com

“A precursor to generic programming, functional programming

is especially powerful in constructing succinct, flexible solutions

that process sequences of data regardless of type.”

Which paradigms do you
regularly use? Have you noticed
that the language you use
influences the solutions

you create?
�

Follow the link on the StickyMinds.com
homepage to join the conversation.

Listing 5

def union(s,t):

return reduce(lambda sofar, x: sofar + ([] if x in s else [x]), t, s)

Listing 6

def intersection(s,t):

return reduce(lambda sofar,x: sofar + ([x] if x in s else []), t, [])

Listing 7

def compose(funs):

return lambda x: reduce(lambda z,f: f(z), list(reversed(funs)), x)

Listing 8

def add1(stuff):

return [x+1 for x in stuff]

def mult2(stuff):

return [x*2 for x in stuff]

c = compose([add1, mult2])

print c(range(10)) # [1, 3, 5, 7, 9, 11, 13, 15, 17, 19]

