
14 BETTER SOFTWARE MARCH 2008 www.StickyMinds.com

Code Craft

The Other Side of Complexity
by Chuck Allison

Civilization advances by extending the
number of important operations we can
perform without thinking.

 – Alfred North Whitehead

Software development has always been an exer-
cise in managing complexity. It has progressed
as a discipline as good minds have created
abstractions that transform complexity into
simplicity.

There was a day, for example, when you
had to write something like this:

mov eax, DWORD PTR _x$[ebp]

add eax, DWORD PTR _y$[ebp]

mov DWORD PTR _z$[ebp], eax

instead of this:
int z = x + y;

High-level languages encapsulated the complexity of pro-
gramming at the machine level. Writing logical and quantita-
tive expressions became simple again.

Just as a statement is an abstraction of lower-level instruc-
tions, a function, or subroutine, is an abstraction of groups
of related statements. Subroutines were the first software ab-
straction to facilitate things we take for granted today, such
as refactoring and reusing code. Hence, functions enable the
crucial practice of “separation of concerns” at the procedural
level, so developers can build functional units independently.

Function Abstraction
If writing a function constitutes “statement abstraction,”

what is “function abstraction”? I see a number of ways of
looking at this. One approach is to group related functions
into a single, logical unit, like the functions in C’s <string.
h> header or the static methods in Java’s Character class.
But does this really represent a substantively higher level of
abstraction? Perhaps function overloading is a slightly better
example of function abstraction—but only slightly. Instead of
coming up with unique function names on your own, the com-
piler does it for you.

About the same time Dennis Ritchie was designing the C
language, researchers in Scotland were working on ML, a
strongly typed functional language. ML was the first statically
typed language to generalize function definitions across types.

Consider the function in listing 1 to reverse a list.

ML uses pattern matching to select which branch of a func-
tion definition to execute. In the case of reverse, if the argu-
ment is the empty list (nil), then nil is returned. Otherwise
the first list element is bound to the variable h and the rest of
the list to the variable t to set up a recursive call. The point of
this example, however, is revealed in the reverse function’s
type signature:

val reverse = fn : ‘a list -> ‘a list
The token ‘a is a type variable, like a template parameter in
C++. The reverse function can process a homogeneous list of
elements of any type, as you can see in the sample execution
in listing 2.

Now you know where C++ got the idea for template type
parameters. Accommodating a family of related functions in a
single definition surely qualifies as function abstraction.

Data Abstraction and Beyond
You would think that the next logical step would be to

group data and related functions together into a coherent unit.
It would have been, too, if it hadn’t already been done almost
a decade earlier in the form of classes in Simula-67. Simula-67
introduced classes, inheritance, and subtype polymorphism,
the type of function abstraction you achieve every time you
override a (virtual) method in a subclass.

IS
TO

CK
PH

O
TO

fun reverse nil = nil

| reverse (h::t) = reverse t @ [h];

Listing 1

- reverse[1,2,3];

val it = [3,2,1] : int list

- reverse[“one”,”two”,”three”];

val it = [“three”,”two”,”one”] : string list

Listing 2

 www.StickyMinds.com MARCH 2008 BETTER SOFTWARE 15

Code Craft

There are still more abstractions out there, however.
If you were programming in the late 1980s to early 1990s

when object-oriented programming was starting to catch on,
you were probably using C++. When writing a network appli-
cation, you probably still had to use a C-like API since vendors
were slow to catch up with the OO revolution. Listing 3 shows
some typical code.

The function use_net must check for errors on every call
to the network API. In the case of an error, it returns an error
code that you have to pass on to your caller—after closing the
connection. Very tedious.

Then along came exceptions to make the job easier by let-
ting errors propagate up to the caller. The code simplifies con-
siderably, as shown in listing 4.

Oops! If use_net fails, the connection is left open. No
problem—you can catch the exception on its way up, like in
listing 5.

But now you have to close the database on each possible
path. Yuck. As shown in listing 6, Java makes it a little easier.

But there is still code here that you shouldn’t have to write.
A better solution uses deterministic destruction, wherein the
connection is encapsulated in a class with a destructor that
closes the database, like in listing 7.

Now you’re down to two simple lines—code that is easier
to understand and easier to test. The C++ term for this impor-
tant practice is “resource acquisition is initialization” (RAII),
which suggests its usage pattern: acquire resources in construc-
tors, release them in destructors. Languages in common use
that support this idiom include C++, D, and C#.

Even if you have to create a connection on the heap, you
can use C++’s new shared_ptr as an RAII wrapper, as the
code in listing 8 illustrates.

No matter how execution leaves this scope, the shared_ptr
destructor calls deleter, which closes the connection. There’s
no need for if statements, a finally clause, or explicit excep-
tion handling.

Reification, Patterns, and System Architecture
Suppose you have a linked list of objects of some type.

How would an early 1990s programmer traverse it? The tra-
ditional solution consisted of a pair of “first-next” functions,
something like listing 9.

Not too shabby, but why should we reveal that we’re us-
ing pointers to traverse the list? What if we change our mind
later and use some other mechanism? Users shouldn’t have to
change the code when we change our implementation.

Another downside to this solution is that users can have
only one active traversal at a time, since the list itself
does the advancing. Such a container isn’t sure what
kind of abstraction it is: Does it hold things or does
it traverse things? To do both violates the important
design principle of cohesion: Abstractions should do
one thing well. A better design moves the notion of
traversal into its own abstraction: an iterator.

In current terminology, the Iterator design pat-
tern reifies sequence traversal. To reify is to make a

Connection*con = net_connect(…);

if (con) {

 int err_code = use_net(con);

 net_close(db);

 if (err_code)

 // Report network error

}

else {

 // Report connection failure

}

Listing 3

Connection*con = net_connect(…); // May throw

use_net(con); // May throw

net_close(db);

Listing 4

Connection*con = net_connect(…); // May throw

try {

 use_net(con); // May throw

 net_close(db);

}

catch (…) {

 net_close(db);

}

Listing 5

Connection con(…); // An object; not a pointer

use_net(con);

Listing 7

try {

 use_net(con); // May throw

}

finally {

 net_close(db);

}

Listing 6

void deleter(Connection* p) {

 net_close(p);

}

shared_ptr<Connection> con(new Connection(…), &deleter);

use_net(con.get());

Listing 8

16 BETTER SOFTWARE MARCH 2008 www.StickyMinds.com

Summary
In The Mythical Man Month, Frederick Brooks quotes Steve

Lukasik of Northrop: “Yesterday’s complexity is tomorrow’s
order… I believe that someday the ‘complexity’ of software
will be understood in terms of some higher order notions.”
You and I are in the midst of this evolutionary phenomenon.
Software will always be an exercise in managing complexity,
because there appears to be no end to the problems to which
we can apply automatic computation. To be successful, you
and I need to acquaint ourselves with the abstractions already
in circulation, and when we hit the next wall of complexity, we
can reuse appropriate abstractions or invent new ones. {end}

concept concrete, or, as Wikipedia states, “Reification allows
a computer to process an abstraction as if it were any other
data.” Moving iteration into concrete objects external to the
sequences under traversal simplifies the container while allow-
ing multiple, simultaneous iterations. It also allows the defin-
ing of algorithms in terms of iterators instead of containers, so
you can apply algorithms to any type of sequence, be it a list,
a vector, or a built-in array. This is the substance of the revolu-
tion in generic programming inaugurated by C++’s standard
template library, yet another step up the abstraction ladder. All
patterns—design patterns such as Iterator or Visitor, or archi-
tectural patterns like Layers or Pipes and Filters—encapsulate
complexity by reifying some crucial system concept.

Code Craft

Do you see yourself as an
abstractionist as well as a

coder? At what “level” do you
typically code?

Follow the link on the StickyMinds.com
homepage to join the conversation.

List<int> theList;

// After populating the list…

int* pItem = theList.first();

while (pItem != NULL) {

 // Use *pItem, then…

 pItem = theList.next();

}

Listing 9

